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Abstract: Deforestation is a major factor reducing natural habitats, leading to tropical ecosystems
and biodiversity loss worldwide. The Lacandona region in southern Mexico holds one of the
largest fragments of tropical rainforest in North America. We evaluated the deforestation of the
Lacandona region harmonizing concepts and methodologies. An international (FAO definition),
governmental (national definition), and regional definition of deforestation with applications at
different scales were analyzed and harmonized with two classification methods (likelihood and
spectral angle mapper (SAM)). We used 2015 and 2018 Landsat 8 images, and likelihood and SAM
classifications were applied for FAO and regional definitions of deforestation. Overall, the best
evaluated classifier in quantity was likelihood for 2015 and 2018 (kappa: 0.87 and 0.70, overall
accuracy: 91.8 and 80.4%, and quantity disagreement: 4.1 and 10 %, respectively). The allocation
disagreement only showed exchange between classes. Nevertheless, they did not show differences
between classifiers, although 2015 had less disagreement than 2018: exchange, 4.1% for likelihood and
SAM; shift: 0% for likelihood and SAM. Maps based on the regional definition of deforestation showed
that the likelihood classification detected 11,441 ha less deforestation than SAM (40,538 and 51,979 ha,
respectively). The FAO definition of deforestation showed that likelihood classification detected
11,914 ha less deforestation than SAM classification (37,152 and 49,066 ha, respectively). Further, the
likelihood classification showed 3387 ha more of deforestation according to the regional definition
than the FAO definition of deforestation (40,538 and 37,152 ha, respectively). SAM classification
showed that the regional definition showed 2913 ha more deforestation than the FAO definition
(51,979 and 49,066, respectively). We concluded that implementation of governmental programs in
the Lacandona region requires estimations based on a careful selection of deforestation definitions
and methods.

Keywords: concepts and methodologies harmonized; deforestation; land use change; tropical
rainforest; biodiversity hotspot

1. Introduction

Deforestation is a main factor reducing and fragmenting natural habitats, thus leading
to ecosystems and biodiversity loss worldwide [1]. Tropical ecosystems have been par-
ticularly affected by rampant deforestation which has negatively impacted biodiversity
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hotspots [2–4]. For example, it has been estimated that around 5 million ha of forest are
annually lost due to deforestation worldwide, and nearly 95% of this deforestation occurs
in the tropical regions [5].

Deforestation in Mexico has been increasing at high rates, threatening tropical ecosys-
tems that hold high biodiversity numbers. It has been estimated that in pre-Columbian time,
tropical forests covered approximately 12% of the nation, but high rates of deforestation in
recent decades have reduced their coverage more than 50%. During the first decade of this
century, Mexico lost almost 3.5% of the arboreal coverage [6]. Specifically, the Lacandona
region holds one of the largest fragments of tropical rainforest in North America, although
it lost, from 2000 to 2008, nearly 50,000 ha (10% of its area) due to deforestation [7]. Even
though the existing governmental programs to deter deforestation are based on estimations,
the results are often different or even contradictory [6–8]. Thus, a major challenge consists
in using robust definitions and methods for monitoring deforestation [9] and evaluating the
efficacy of established governmental programs for preventing deforestation and providing
better options for a sustainable use of natural resources. For example, programs such as
Reduce emissions from deforestation and forest degradation (REDD) and Payment for
environmental services (PES) require reliable information on deforestation at different
scales [10,11].

Deforestation is a challenging problem because its measurements lead to uncertainty
related to lack of knowledge and of adequate information on the region under study [12,13].
Thus, it is important to perform transparent analyses of deforestation estimates [14,15]. For
example, several studies have emphasized the need to harmonize the definitions and meth-
ods for estimating deforestation [16–23], allowing direct comparisons between datasets [24].
Here, we aimed to estimate deforestation at the Lacandona region based on a harmonized
model of definitions and methods, using a reference framework (conceptual reference
framework) as tools, for identifying interactions and intervention actions with a common
language [25,26]. We analyzed three definitions of deforestation at different scales (inter-
national, national, and local) harmonized with two methods of quantification (likelihood
and spectral angle mapper (SAM)). We estimated, evaluated, and compared deforestation
estimations with the three definitions of deforestation for the Lacandona region.

2. Materials and Methods
2.1. Study Region

The Lacandona region (91.748◦W, 17.229◦N, and 90.562◦W, 15.980◦N) in southern Mex-
ico holds 550,138 ha and 29,345 inhabitants located in 93 rural settlements [27]. This region
includes seven protected areas (PA) decreed between 1977 and 1998 (Montes Azules, 1978;
Chan-Kin, 1992; Lacantún, 1992; Bonampak, 1992; Yaxchilán, 1992; Metzabok, 1998, and
Nahá, 1998) (Figure 1) [28]. These PA are under high threat due to rampant deforestation in
the region [6].

2.2. Concepts and Methodologies Harmonized

We chose three definitions of deforestation and two methodologies for quantifying de-
forestation. The definitions included the Food and Agriculture Organization of the United
Nations (FAO definition of deforestation, hereafter) [5], a governmental definition based on
the Mexican General Law of Development of Forest Sustainability (National definition of
deforestation, hereafter) [29], and a regional definition of deforestation produced explicitly
to address the biological characteristics of the Lacandona tropical ecosystems (Appendix A).
These definitions were analyzed within the conceptual reference framework for defining
deforestation (CRFforD, see [9]) using the nine following parameters: (1) terms used to
describe deforestation, (2) basis for forest definition, (3) vegetation forms considered to
be forest, (4) vegetation origin considered to be forest, (5) forest state, (6) forest trajectory
of deforestation, (7) deforestation causes, (8) threshold of forest and deforestation, and
(9) methodological scale.
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Figure 1. Location of the Lacandona and extended Lacandona regions in southern Mexico. Green
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We conducted a systematic review of the scientific literature in the Scopus database from
2007 to date, to choose methods that quantified deforestation (Supplementary Materials). We
first selected publications in English measuring deforestation by some quantitative means,
as described in the title or keywords. Subsequently, only those references with replicable,
original, and mixed methods were filtered. We decided to include studies using mixed
methods for their advantage over other approaches [30]. Further, we chose publications
that used sensors of medium spatial resolution at a local scale, focusing on tropical systems,
and that used per-pixel classifiers reporting total accuracy values > 85%. A total of four
publications met these criteria, which used two types of algorithms (likelihood and spectral
angle mapper (SAM)). The two algorithms were tested with each definition of deforestation.
The general characteristics of these algorithms are described below (Table 1).
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Table 1. General characteristics of likelihood and SAM algorithm.

Classification
Type Algorithm Description

Statistical
Distribu-

tion
Classification Images Type Sense Type Scale Environmental

Conditions Strengths Weaknesses

Per-pixel
(defines for each

pixel, a class)

Likelihood

It helps to recognize
patterns and evaluates
the probability that a
pixel is of one class or

another

Parametric Supervised Single image Panchromatic-
multispectral Medium Heterogeneous

It is widely
implemented in
remote sensing

programs

It is highly
dependent on

field
information

SAM

It relates in vectors the
real information

(endmembers) with that
observed by the sensor.
The smaller the angle of
that vector, the greater

the relationship between
the real and observed

information. This
determines each class

No
parametric

Supervised-and
no supervised Single image Multispectral Medium Homogeneous

It helps reduce the
influence of

shadows
Does not depend on
the number of field

data

It does not
distinguish if

the relationship
is positive or

negative
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2.3. Image Processing and Fieldwork

A rearrangement of leaders in this region that caused changes in land use policies,
resulting in differential deforestation [31] defined our focus of the research between 2015
and 2018. Three Landsat 8 scenes, path/rows 20/49, 21/48, and 21/49, of 2015 and 2018,
with atmospheric and radiometric preprocessing were used. Only images with a cloud
cover under 20% from the Landsat 8 surface reflectance collection were included. For each
image, areas covered by clouds, shadows, and water identified by the pixel_qa band were
masked, and the NDVI image value was calculated. Further, pixels were filtered based on
its histogram, selecting those within a range between 16 and 84% of the annual distribution
of data. Thus, we reduced the information derived from remaining unmasked cloud or
shadow values. Finally, the annual mean values for the red and near-infrared (NIR) bands
as well as the NDVI were calculated for the complete study area. This analysis included
all images of 2015 and 2018. It should be noted that we conducted tests with other indices
mentioned in the systematic review (e.g., bands-principal components, bands-Tasseled Cap,
and bands-NDVI). However, the NDVI-NIR-red showed the highest accuracy values. The
cloud cover and reflectance percentile values were selected empirically according to the
quality of the resulting annual mosaic. These procedures were performed in Google Earth
Engine [32]. Indeed, we refer to data obtained from the field but also using higher resolution
images (320 points of classification and 45 points of validations for 2015; 446 points of
classification and 44 points of validations for 2018). In the 2015 scenes, higher-resolution
images were sampled (SPOT, Sentinel-2 and Google Earth; 365 points). In the 2018 scenes,
fieldwork data were obtained (447 points), and for areas with difficult fieldwork access,
Google Earth was used (43 points). The fieldwork data were taken with a laser distance
measurer (1 km range) and a GPS. Each point was taken from the roads that cross the
study site.

2.4. Imaging Classification and Map Depicting Changes

To reduce the uncertainty of using different classes, previous tests were conducted.
It was identified that the highest certainty values were presented when separating the
study area into three land classes (forest, no forest and urban structure). In this sense, the
no forest responded spectrally to agriculture, livestock, and bare soil; the urban structure
responded spectrally to houses and roads. The final map showed that both the no forest
and urban structure classes were consolidated into the no forest class. We used the ENVI
program for imaging classification, and to these three classes were added a mask of water,
clouds, and shadows. Additionally, a new class was generated: the mismatch classification
that included pixels that were classified as mask or non-classified in 2015 and that were
classified in another class in 2018.

For each classification, error matrices, kappa index, and quantity and allocation dis-
agreement were calculated. Given the characteristics of the FAO definition of deforestation,
the land use change maps did not include a deforestation of less than 0.5 ha. As the
spatial resolution of the images was 30 × 30 m (0.09 ha), we excluded deforestation of
less than five pixels (0.45 ha), and these pixels were assigned as forest, using ArcGIS.
Conversely, the regional definition of deforestation considered deforestation areas above
0.09 ha. In this case, the maps depicting land use changes included all pixels. See Figure 2
for complete methodology.
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3. Results
3.1. Towards the Harmonization of Concepts and Methodologies for Deforestation

The three definitions of deforestation were analyzed in the CRFforD through nine
parameters. We observed that the FAO definition of deforestation was the most complete
as it included all parameters (Table 2). On the other hand, the regional definition of
deforestation also included nine parameters of the CRFforD, although it was not possible
to locate the information to describe all variables of the parameter threshold of forest and
deforestation as neither the forest cover nor the height of trees was described. Nonetheless,
the available information enabled to link the regional definition of deforestation with a
methodological scale (Table 2). The national definition of deforestation included only
five of the nine parameters, without considering information of the parameter threshold
of forest and deforestation, which links both conceptual frameworks. Given that the
national definition of deforestation did not show described thresholds, we excluded it for
quantifying deforestation (Table 2).

The parameters of national and regional definitions of deforestation (Table 2) were
used to build the rules for the systematic review, and four scientific contributions were se-
lected see [33–36]. The four proposed classifications in the methodologies were supervised:
three likelihood, and one spectral angle mapper (SAM). The three classifications showed
precisions between 85 and 90%; only one showed >95% (likelihood). Three methodologies
used land use classes for later detecting forest; only one methodology used a binary classifi-
cation (forest-no forest). The likelihood and SAM classifications were tested for both the FAO
and regional definitions of deforestation, respectively. In particular, for the implementation
of each methodology, it was important to consider the threshold parameter (Table 2). For
the FAO definition of deforestation, the minimum value of the forest extension was 0.5 ha,
while the same value in regional definition was 0.09 ha (900 m2).

3.2. Likelihood and SAM Image Classifications

The image likelihood and SAM classification process were performed for both the FAO
and regional definitions of deforestation. The classifiers were analyzed with various map
evaluation techniques (overall, user and producer accuracy, kappa index, and quantity and
allocation disagreement). In the case of kappa index and overall accuracy, the indices and
their variances were included for analysis [22]. The best evaluated classifier in quantity was
likelihood for 2015 and 2018 (kappa: 0.87 and 0.70; overall accuracy: 91.8 and 80.4%, and
quantity disagreement: 4.1 and 10%, respectively). However, the allocation disagreement
only presented exchange between classes. Nevertheless, they did not show differences
between classifiers but had less disagreement for 2015 than for 2018 (exchange: 4.1% for
likelihood and SAM; shift: 0% for likelihood and SAM) (Table 3).
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Table 2. Analyses of the conceptual reference framework for deforestation CRFforD.

Resource
Term Used to

Describe
Deforestation

Basis for
Forest

Definition

Vegetation
Forms

Considered
to Be Forest

Vegetation
Origin

Considered
to be Forest

Forest State

Forest
Trajectory
of Defor-
estation

Deforestation
Causes

Forest
Canopy

Cover (%)

Surface
(ha)

Height of
Trees (m)

Deforested
Perma-
nence
Time

Deforestation
Canopy

Cover (%)

Methodological
Scale

International Conversion Use Tree system Natural and
plantations

Primary,
secondary,
native, and
no native

N, P, M, D,
R, A, Me,

Rn

Human and
natural >10 0.5 >5 <5 years >10

Field
data-medium

resolution
sensors

National Loss Cover Tree and No
tree system Natural Human and

natural

All sensors
depending on

the forest
analyzed

Local Loss Cover Tree and No
tree system

Natural and
plantations

Primary,
secondary,
native, and
no native

Human and
natural 0.09 <5 years >90

Field
data-medium

resolution
sensors

Threshold of forest and deforestation: N = Natural; P = Protected; M = Managed; D = Degraded; R = Reforested; A = Afforested; Me = Improvement; Rn = Natural Regeneration.

Table 3. Summary of evaluation techniques for the Maximum likelihood and Spectral angle mapper classifications for 2015 and 2018.

Algorithm Classes
User Accuracy

(%)
Producer

Accuracy (%)
Overall Classification

Accuracy (%)
Variance Overall

Classification Accuracy (%)
Kappa Variance

Kappa
Quantity

Disagreement (%)
Allocation Disagreement (%)

Shift Exchange

Maximum
likelihood 2015

Forest 100.00 100.00
91.84 7.66 0.87 0.11 4.08 0.00 4.08Non-forest 84.21 94.12

Urban
infrastructure 92.86 81.25

SAM 2015
Forest 100.00 93.75

87.76 8.94 0.81 0.13 8.16 0.00 4.08Non-forest 76.19 94.12
Urban

infrastructure 92.31 75.00

Maximum
likelihood 2018

Forest 75.00 93.75
80.43 11.74 0.70 0.16 10.87 0.00 8.70Non-forest 80.00 53.33

Urban
infrastructure 87.50 93.33

SAM 2018
Forest 68.18 93.75

78.26 11.86 0.67 0.17 13.04 0.00 8.70Non-forest 77.78 46.67
Urban

infrastructure 93.33 93.33
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Both likelihood and SAM classifications showed higher difficulties differentiating
between urban infrastructure and no forest in 2015, and between forest and no forest, from
no forest to forest and urban infrastructure, and from urban infrastructure to no forest for 2018.
It is also likely that some of these errors during the classification process in likelihood
classification were in pixels that were forest but were classified as urban infrastructure. In the
SAM classification, these same pixels were named as non-classified. Further, the likelihood
classification allowed a better differentiation than SAM (Figure 3).
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Figure 3. Distribution of the land use and land cover for the likelihood and SAM classifications
(2015 and 2018) for the Lacandona and Lacandona extended regions, respectively. Rows: Maps of
each tested algorithm; columns: years tested. The class forest is depicted in green; no forest in blue;
urban infrastructure in yellow; non classified in black, and mask in gray. Thick line depicts the extended
Lacandona region. Thin line depicts the Lacandona region. See Methods for details.
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3.3. Deforestation Maps Using Harmonized Methodologies to Their Definitions

We were interested in estimating the deforestation in the Lacandona region using
CRFforD and the methods that result of the systematic review. Deforestation was quantified
using two definitions harmonized with two methods of quantification, although three
definitions were analyzed (local, national, and international definitions). Nevertheless,
in the case of the national definition of deforestation, the selection of the method relied
exclusively on the interpretation of the definition per se and of the forest under study.
Thus, we excluded the national definition of deforestation. Overall, we observed that the
deforestation estimates that resulted from the likelihood and SAM classifications showed
high accuracy (>78%). Thus, the deforestation maps had a substantial arrangement [37].
Both definitions of deforestation described this process in the Lacandona region, but only
the FAO and the local definitions of deforestation could be linked to a quantitative method
based on their thresholds (e.g., forest cover, minimum area, height of trees, among others).

Regional definition of deforestation-based maps showed that the likelihood classifica-
tion detected 11,441 ha less deforestation than SAM (40,538 and 51,979 ha, respectively).
Similarly, the FAO definition of deforestation showed that likelihood classification detected
11,914 ha less deforestation than the SAM classification (37,152 and 49,066 ha, respectively).
The likelihood classification showed 3387 ha more of deforestation when using the regional
than the FAO definitions (40,538 and 37,152 ha, respectively). The SAM classification
showed 2913 ha more deforestation with the regional than the FAO definitions (51,979 and
49,066, respectively). In all cases, we observed a higher deforestation using a compound
SAM and regional definition of deforestation. The distribution of deforestation varied
according to the likelihood or SAM classification (Figure 4).
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Figure 4. Land use changes for the likelihood and SAM classifications according to the FAO and
regional definitions of deforestation (2015 and 2018), for the Lacandona and extended Lacandona
regions, respectively. Left panels show maps using the likelihood and SAM classification algorithms.
Right panels show maps of areas depicting details in land use changes. The FAO definition of
deforestation is depicted in red; the regional definition of deforestation includes pixels in red and
black. For these maps, forest class includes both no forest and urban infrastructure classes in Figure 3,
respectively. See Methods for details.

4. Discussion
4.1. Particularities of Deforestation Definitions

The FAO definition of deforestation described in detail all parameters of the CRFforD
and clearly pointed the thresholds of the forest and deforestation resulting in an operative
definition. This definition of deforestation is associated with economic incentives as REDD,
describing the trajectory of the land use of the forest. The REDD program requires the
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eligible forest for economic support to be reforested before 1 January 1990 or afforested
before 1 January 1940 [38]. Consequently, any landscape that intends to join the REDD pro-
gram has to describe its age and the process that did result in a forest (e.g., primary forest,
secondary forest, reforested forest or afforested forest) [16,18,39–41]. Further, the FAO defi-
nition of deforestation mostly focuses on arboreal ecosystems and considers as forests the
natural forest as well as plantations (e.g., bamboo plantations) [5]. This conceptualization
is crucial because the cover area of a primary forest is given the same economic value as a
plantation, despite the clear differences of their ecological contribution and biodiversity
content [39,41–43]. Another key component of the FAO definition of deforestation is the
minimal threshold of 0.5 ha of deforested area excluding small, deforested fragments from
the analyses. This limitation can be particularly problematic when considering landscape
corridors as riverbanks, small and elongated forest fragments that usually are less than
0.5 ha, but play an important role of ecological connectivity in ecosystems. Further, small
undetected deforested areas under the FAO definition of deforestation can reflect particular
economic activities of local inhabitants, providing information to establish programs for
preventing small-scale deforestation [44,45].

On the other hand, the national definition of deforestation is based on legal purposes
that adequately address the diverse ecological characteristics of ecosystems in Mexico [29].
Nonetheless, the absence of a threshold prevents using it under an operative definition of
deforestation. To harmonize the national definition of deforestation with a quantitative
method, a detailed knowledge of the study area is necessary for establishing a minimum
area for analyses. We observed that the regional definition of deforestation is described
under all the parameters of the CRFforD. Based on the described thresholds, the regional
definition of deforestation is linked to a methodological scale and a remote sensor. Further,
the regional definition of deforestation also included natural forest and plantations indis-
criminately, facilitating coarse-grained analyses that do not require differentiation between
native and non-native forests. However, it imposes some challenges to ongoing national
programs such as the PSA, which only consider natural vegetation [46].

4.2. Particularities of Classifications

The likelihood and SAM classifications for quantifying deforestation that were specifi-
cally selected for the characteristics of the Lacandona region showed high precision (78%)
on the maps of deforestation. The results on the distribution of disagreements showed
high values in quantity disagreement, which also reflected variations in the estimates of
deforestation. However, the processing of deforestation maps allowed us to detect some
variables of the methods affecting estimations of deforestation. For example, the sampling
design of field data produced differences on the deforestation values, which were detected
as the OCA values of 2018, obtained from a classification that included fieldwork data; OCA
values were lower in 2018 than 2015, which did not consider fieldwork data. We recognized
that the distribution of fieldwork data was not optimal given that the Lacandona region
shows areas of difficult access [46]. To overcome this shortcoming, we assumed the risk of
a deficient sampling in areas of difficult access and used higher spatial resolution images
for these particular sites. For example, the likelihood classification mistakenly identifies
pixels of water bodies as urban infrastructure, while the SAM classification puts pixels of
water bodies as undetermined (Figure 3). Further, the likelihood classification identified
pixels of urban infrastructure in areas highly unlikely to have urban settlements. Thus,
the errors were clearly related to the classification algorithms [47]. Further, the spatial
resolutions of sensors did not provide a resolution to accurately measure an area of 0.5 ha.
For example, for a 30 × 30 m image, 5 pixels are required to obtain an area of 0.45 ha.
There is also risk involved in converting each pixel into a polygon, as this transformation
depends on the method employed [48]. Lastly, estimates of deforestation do not vary only
between classification methods but also between the programs used (e.g., ENVI, ERDAS,
Idris, and eCognition, among others) [47,49]. Consistency and transparency during the
implementation of the elected classifier are crucial.
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4.3. Objectives, Harmonized Definitions, and Methods

The harmonization of deforestation definitions and their methods for quantification
are important, as their suitability for ecosystems, sensitivity to satellite images, and sus-
ceptibility to the amount of data for the classifications vary according to the definitions
and the methods. Thus, the selection of the proper definition and method depends on
the study area and entails previous knowledge to increase the certainty of deforestation
estimates and their optimal evaluation. Our study showed that variations observed for
estimating deforestation depend on the definition and methods used. We observed over-
and underestimations of deforestation in our comparisons of deforestation. Thus, harmo-
nized definitions linked to methods are far more convenient for a specific objective. Some
examples are the following:

Implementation of economic incentives at the regional level. The governmental program
of Payment for Environmental Services (PES) has been established in the Lacandona re-
gion [46]. This program is an economic incentive for forest landowners encouraging
conservation, protection, restoration, and sustainable management of ecosystems. To join
the program, candidates must own an area of between 100 and 200 ha per person or
200 and 2000 ha for groups of persons [46]. The economic incentive lasts for 5 y, and an
accurate supervision of the extension and temporality of the forest cover is mandatory for
remaining in the program. In this particular case, a regional definition of deforestation
is more suitable as it provides information at a resolution of 900 m2, which is enough to
observe land use changes at the parcel scale. The method should include classification
algorithms separating natural forest from tree plantations due to the exclusion of tree
forest plantations from the PES program. The likelihood and SAM classification algorithms
can perform such a task of differentiation of natural forest from plantations if enough
information is provided to discern between both natural forest and plantation, respec-
tively [46,50,51]. An alternative is to conduct fieldwork in previously selected key areas to
validate (or not) deforestation [9].

Legislation and forest conservation. A national (and broad) definition of deforestation
that includes all ecosystems is crucial. In Mexico, the national definition of deforestation
has an ambiguity to measure forest and deforestation. Fortunately, the national definition
of deforestation was recently adjusted in the environmental law of 2020, incorporating
into its definitions of forest and deforestation some new terminology, as forested area
with trees, deforestation in forested area with trees, and secondary native vegetation,
among others [11]. The inclusion of an updated terminology in the national definition of
deforestation increases more reliable estimates of deforestation with adequate legislation.

Global quantification of deforestation. To compare deforestation trends at the global scale,
it is recommended to use harmonized definitions between countries. The FAO and other
institutions created a definition that could be applicable to a wide range of ecosystems
worldwide [16]. Although the FAO definition of deforestation has a major advantage
at the global level, it has many constraints and low accuracy at the local level [52,53].
The FAO definition of deforestation requires adequate methods to differentiate between
forest plantations that are permitted (bamboo) and others that are not permitted (oil
palm). The likelihood and SAM classification algorithms are useful when using a robust
sampling method.

4.4. Assessing the Accuracy of Maps

The accuracy of maps resulting from the classifications requires a critical evaluation [54,55].
It is known that the use of the evaluation technique affects the accuracy values of maps (e.g.,
variations up to 40% due to factors such as method and definition selection and data design,
among others) [22,56,57]. For example, kappa was the most widely used index to evaluate
maps, although it generates redundancy errors [32,57]. Thus, various indexes have been
developed based on the error matrix that, in some cases, include both quantity and location
errors (e.g., overall, user and producer precision, fuzzy, cluster, quantity disagreement,
allocation disagreement, and landscape configuration disagreement) [57–59]. Our study
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evaluated maps using the kappa index; the overall, user, and producer accuracies; and
quantity disagreement, which respond to quantity characteristics. Further, these maps
were also evaluated with techniques of error by location and allocation disagreement
(exchange and shift). We believe that an integrative approach for map evaluation techniques
provides comparable results, showing accurately the potential errors and correctness of the
selected classifiers.

5. Conclusions

Our study quantified the deforestation at the Lacandona region holding one of the
largest fragments of tropical rainforest. We used a harmonized model of definitions and
methods to produce a straightforward analytical process of deforestation, decreasing the
uncertainty of estimating deforestation. We consider that the extended use of this approach
will facilitate comparisons between deforestation estimates and an adequate use of available
data. We conclude that although there are several approaches to estimate deforestation
in the Lacandona region, some are more adequate for specific objectives than others. The
implementation of governmental programs in the Lacandona region requires estimations
based on a careful selection of deforestation definitions and methods.

Finally, beyond our study area, the approach described in this study could be followed
in current deforestation hotspots in the tropics, such as Brazil, Democratic Republic of
Congo, and Indonesia.
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Appendix A Forest and Deforestation Definition

International scale
Forest (FAO 2020. Terms and Definitions. Global Forest Resources Assessment.

FAO) [60].
Land spanning more than 0.5 hectares with trees higher than 5 m and a canopy cover

of more than 10 percent or trees able to reach these thresholds in situ. It does not include
land that is predominantly under agricultural or urban land use.

Explanatory notes:
1. Forest is determined both by the presence of trees and the absence of other predom-

inant land uses. The trees should be able to reach a minimum height of 5 m in situ.

https://www.mdpi.com/article/10.3390/rs14102319/s1
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2. Includes areas with young trees that have not yet reached but which are expected
to reach a canopy cover of 10 percent and tree height of 5 m. It also includes areas that
are temporarily unstocked due to clear-cutting as part of a forest management practice or
natural disasters and which are expected to be regenerated within 5 years. Local conditions
may, in exceptional cases, justify that a longer time frame is used.

3. Includes forest roads, firebreaks, and other small open areas; forest in national
parks, nature reserves, and other protected areas such as those of specific environmental,
scientific, historical, cultural, or spiritual interest.

4. Includes windbreaks, shelterbelts, and corridors of trees with an area of more than
0.5 hectares and width of more than 20 m.

5. Includes abandoned shifting cultivation land with a regeneration of trees that have,
or are expected to reach, a canopy cover of 10 percent and tree height of 5 m.

6. Includes areas with mangroves in tidal zones, regardless of whether this area is
classified as land area or not.

7. Includes rubber-wood, cork oak, and Christmas tree plantations.
8. Includes areas with bamboo and palms provided that land use, height, and canopy

cover criteria are met.
9. Includes areas outside the legally designated forest land which meet the definition

of “forest”.
10. Excludes tree stands in agricultural production systems, such as fruit tree planta-

tions, oil palm plantations, olive orchards and agroforestry systems when crops are grown
under tree cover. Note: Some agroforestry systems such as the “Taungya” system where
crops are grown only during the first years of the forest rotation should be classified as
forest.

Deforestation (FAO 2020. Terms and Definitions. Global Forest Resources Assessment.
FAO) [60].

The conversion of forest to other land use independently whether human-induced or not.
Explanatory notes:
1. Includes permanent reduction of the tree canopy cover below the minimum 10

percent threshold.
2. It includes areas of forest converted to agriculture, pasture, water reservoirs, mining,

and urban areas.
3. The term specifically excludes areas where the trees have been removed as a result

of harvesting or logging and where the forest is expected to regenerate naturally or with
the aid of silvicultural measures.

4. The term also includes areas where, for example, the impact of disturbance, over-
utilization, or changing environmental conditions affects the forest to an extent that it
cannot sustain a canopy cover above the 10 percent threshold.

National scale
Vegetación forestal (DOF. 2018. Ley General de Desarrollo Forestal Sustentable) [29].
It comprises plants and fungi that grow and develop naturally to conform temperate

and tropical, dry, and semi-dry forests and other ecosystems, leading to the development
and coexistence of other resources and natural processes.

Deforestación (DOF. 2018. Ley General de Desarrollo Forestal Sustentable) [29].
Loss of forest vegetation permanently due to natural or human-induced causes.
Regional scale
Forest vegetation (DOF. 2018. Ley General de Desarrollo Forestal Sustentable) [29].
It is the group of plants and fungi that grow and develop naturally, in temperate

and tropical forests, arid and semi-arid forests, and other ecosystems, leading to the
development of coexistence between other resources and natural processes.

Deforestation.
Loss of forest vegetation permanently due to natural or human-induced causes. The

loss is observed in 90% of forest cover with a minimum unit of 900 m2.
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