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Abstract

We have performed a search for CPT violation in neutral charm meson oscillations. While flavor mixing in the charm sector
is predicted to be small by the Standard Model, it is still possible to investigate CPT violation through a study of the proper
time dependence of a CPT asymmetry in right-sign decay rates forD0 → K−π+ and �D0 → K+π−. This asymmetry is
related to the CPT violating complex parameterξ and the mixing parametersx andy: ACPT ∝ (Reξ)y − (Im ξ)x. Our 95%
confidence level limit is−0.0068< (Reξ)y − (Im ξ)x < 0.0234. Within the framework of the Standard Model Extension
incorporating general CPT violation, we also find 95% confidence level limits for the expressions involving coefficients of
Lorentz violation of(−2.8<N(x,y, δ)(�a0 + 0.6�aZ) < 4.8)× 10−16 GeV, (−7.0<N(x,y, δ)�aX < 3.8)× 10−16 GeV,
and(−7.0< N(x,y, δ)�aY < 3.8) × 10−16 GeV, whereN(x,y, δ) is the factor which incorporates mixing parametersx, y
and the doubly Cabibbo-suppressed to Cabibbo-favored relative strong phaseδ.
 2003 Elsevier Science B.V.

1. Introduction

The combined symmetry of charge conjugation
(C), parity (P), and time reversal (T) is believed to
be respected by all local, point-like, Lorentz-covariant
field theories, such as the Standard Model. However,
extensions to the Standard Model based on string
theories do not necessarily require CPT invariance,
and observable effects at low energies may be within
reach of experiments studying flavor oscillations [1,2].
A parametrization [3] in which CPT and T violating
parameters appear has been developed which allows
experimental investigation in many physical systems
including atomic systems, Penning traps, and neutral
meson systems [4]. Using this parameterization we
present the first experimental results for CPT violation
in the charm meson system.

Searches for CPT violation have been made in
the neutral kaon system. Using an earlier CPT for-
malism [5,6], KTeV reported a bound on the CPT
figure of merit rK ≡ |mK0 − m�K0|/mK0 < (4.5 ±
3) × 10−19 [7]. A more recent analysis, using frame-
work [3] and more data extracted limits on the coef-
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ficients for Lorentz violation of�aX,�aY < 9.2 ×
10−22 GeV [8]. CPT tests inB0 meson decay have
been made by OPAL at LEP [9], and by Belle at KEK
which has recently reportedrB ≡ |mB0 −mB0|/mB0 <

1.6× 10−14 [10].
To date, no experimental search for CPT violation

has been made in the charm quark sector. This is due
in part to the expected suppression ofD0 − �D0 oscil-
lations in the Standard Model, and the lack of a strong
mixing signal in the experimental data. Recent mix-
ing searches include a study of lifetime differences be-
tween charge–parity (CP) eigenstates [11–13], a study
of the time evolution ofD0 decays by CLEO [14]
and a study of the doubly Cabibbo-suppressed ratio
(RDCS) for the decayD0 → K+π− [15]. Even with-
out knowledge of the mixing parameters, one can in-
vestigate CPT violation through a study of the time de-
pendence ofD0 decays. The time evolution of neutral-
meson state is governed by a 2× 2 effective Hamil-
tonianΛ in the Schrödinger equation. Indirect CPT
violation occurs if and only if the difference of di-
agonal elements ofΛ is nonzero. The complex pa-
rameterξ controls the CPT violation and is defined
as ξ = �Λ/�λ, where�Λ = Λ11 − Λ22 and �λ

is the difference in the eigenvalues.ξ is phenomeno-
logically introduced and therefore independent of the
model. Time-dependent decay probabilities into right-
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sign (D0 → K−π+) and wrong-sign decay modes
(wrong sign is used here in the context of decays
via mixing,D0 → �D0 → K+π−) for neutral mesons
which express the CPT violation have been developed
in a general parametrization [3]. For the decay of aD0

to a right-sign final statef , the time-dependent decay
probability is:

Pf (t) ≡ ∣∣〈f |T |D0(t)〉∣∣2
= 1

2
|F |2 exp

(
−γ

2
t

)

(1)

× [(
1+ |ξ |2)cosh�γ t/2

+ (
1− |ξ |2)cos�mt

− 2 Reξ sinh�γ t/2

− 2 Imξ sin�mt
]
.

The time-dependent probability for the decay of a�D0

to a final statef̄ , �Pf̄ (t), may be obtained by making

the substitutionsξ → −ξ andF → �F in the above
equation.F ∗ = �F is strictly true if CP (CPT) is not di-
rectly violated, which experimental evidence suggests
is very nearly true in charm decays.F = 〈f |T |D0〉
represents the basic transition amplitude for the de-
cay D0 → f , �γ and �m are the differences in
physical decay widths and masses for the propagat-
ing eigenstates and can be related to the usual mix-
ing parameters [12]x = �M/Γ = −2�m/γ , y =
�Γ/2Γ = �γ/γ , andγ is the sum of the physical
decay widths. Expressions for wrong-sign decay prob-
abilities involve both CPT and T violation parameters
which only scale the probabilities, leaving the shape
unchanged. Using only right-sign decay modes, and
assuming negligible direct CPT violation, the follow-
ing asymmetry can be formed,

(2)ACPT(t) =
�Pf̄ (t)− Pf (t)

�Pf̄ (t)+ Pf (t)
,

which is sensitive to the CPT violating parameterξ :

ACPT(t)

(3)

= 2 Reξ sinh�γ t/2+ 2 Imξ sin�mt

(1+ |ξ |2)cosh�γ t/2+ (1− |ξ |2)cos�mt
.

Experiments show thatx, y mixing values are small
(< 5%). Eq. (3), for smallx, y andt , reduces to:

(4)ACPT(t) = (
(Reξ)y − (Im ξ)x

)
Γ t.

2. Experimental and analysis details

In this Letter we search for a CPT violating sig-
nal using data collected by the FOCUS Collaboration
during an approximately twelve month time period in
1996 and 1997 at Fermilab. FOCUS is an upgraded
version of the E687 spectrometer. Charm particles
are produced by the interaction of high energy pho-
tons (average energy≈ 180 GeV for triggered charm
states) with a segmented BeO target. In the target re-
gion, charged particles are tracked by up to sixteen lay-
ers of microstrip detectors. These detectors provide ex-
cellent vertex resolution. Charged particles are further
tracked by a system of five multi-wire proportional
chambers and are momentum analyzed by two oppo-
sitely polarized large aperture dipole magnets. Parti-
cle identification is accomplished by three multi-cell
thresholdČerenkov detectors [16], two electromag-
netic calorimeters, an hadronic calorimeter and muon
counters.

We analyze the two right-sign hadronic decays
D0 → K−π+ and �D0 → K+π−. We use the soft
pion from the decayD∗+ → D0π+ to tag the fla-
vor of theD at production, and the kaon charge in
the decayD0 → K−π+ to tag theD flavor at de-
cay. D0 → K−π+ events are selected by requiring
a minimum detachment# of the secondary (decay)
vertex from the primary (production) vertex of 5σ#,
whereσ# is the calculated uncertainty of the detach-
ment measurement. The primary vertex is found us-
ing a candidate driven vertex finder which nucleates
tracks about a “seed” track constructed using the sec-
ondary vertex and theD momentum vector. Both pri-
mary and secondary vertices are required to have fit
confidence levels greater than 1%. TheD∗-tag is im-
plemented by requiring theD∗ − D0 mass difference
be within 3 MeV/c2 of the nominal value [17]. Aχ2-
like variable calledWi ≡ −2 log(likelihood), wherei
ranges over electron, pion, kaon and proton hypothe-
ses, is used for particle identification [16]. For theK
and theπ candidates we requireWi to be no more
than four units greater than the smallest of the other
three hypotheses (Wi − Wmin < 4) which eliminates
candidates that are likely to be mis-identified. In ad-
dition,D0 daughters must satisfy the slightly stronger
Kπ separation criteriaWπ −WK > 0.5 for theK and
WK − Wπ > −2 for the π . Events in which the fi-
nal stateK−π+ is identified asπ−K+ and vice versa
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are removed by imposing a hardČerenkov cut on the
sum of the two separations((Wπ − WK)K + (WK −
Wπ)π > 8). Kπ pairs with highly asymmetrical mo-
menta are more likely to be background than signal.
A cut is made on the momentum asymmetry,PA =
|(PK − Pπ)/(PK + Pπ)|, to reject these candidates.
The best background rejection is achieved by applying
the cut in the following way,P(D0) >−160+280PA,
whereP(D0),PK andPπ are the momenta of theD
and the daughter kaon and pion, respectively. To avoid
large acceptance corrections due to the presence of a
trigger counter downstream of the silicon detector, we
impose a fiducial cut on the location of the primary
vertex. Fig. 1 shows the invariant mass distribution
for D∗-tagged, right-sign decaysD0 → K−π+ and
�D0 → K+π−. A fit to the mass distribution is car-
ried out where a Gaussian function for the signal and
a second-order polynomial for the background is used.
The fit yields 17 227± 144D0 and 18 463± 151 �D0

signal events.
The proper time decay distribution is distorted

by imposing a detachment cut between the primary
and secondary vertices. The reduced proper time,
defined ast ′ = (# − Nσ#)/(βγ c) where # is the
distance between the primary and secondary vertex,

Fig. 1. Invariant mass of (D0 → K−π+ (a); �D0 → K+π− (b)) for
data (points) fitted with a Gaussian signal and quadratic background
(solid line). The vertical dashed lines indicate the signal region, the
vertical dotted lines indicate the sideband region.

σ# is the resolution on#, and N is the minimum
detachment cut applied, removes this distortion. We
choseN = 5 such that signal to background ratio
was maximal. A simulation study was done measuring
the differences in measured values ofACPT and ξ

using t ′ in place of t in Eq. (5) and Eq. (4). The
differences were found to be negligible compared to
other systematic uncertainties. We plot the difference
in right-sign events between�D0 and D0 in bins of
reduced proper timet ′. The background subtracted
yields of right-signD0 and �D0 were extracted by
properly weighting the signal region (−2σ,+2σ ),
the low mass sideband (−7σ,−3σ ) and high mass
sideband (+3σ,+7σ ), whereσ is the width of the
Gaussian. For each data point, these yields were used
in forming the ratio:

(5)ACPT(t
′)=

�Y (t ′)− Y (t ′) f̄ (t
′)

f (t ′)

�Y (t ′)+ Y (t ′) f̄ (t ′)
f (t ′)

,

where�Y (t ′) andY (t ′) are the yields for�D0 andD0

and f̄ (t ′), f (t ′) are their respective correction func-
tions. The functionsf̄ (t ′) andf (t ′) account for geo-
metrical acceptance, detector and reconstruction effi-
ciencies, and absorption of parent and daughter par-
ticles in the nuclear matter of the target. The correc-
tion functions are determined using a detailed Monte
Carlo (MC) simulation using PYTHIA [18]. The frag-
mentation is done using the Bowler modified Lund
string model. PYTHIA was tuned using many produc-
tion parameters to match various data production vari-
ables such as charm momentum and primary multi-
plicity. The shapes of thef (t ′) andf̄ (t ′) functions are
obtained by dividing the reconstructed MCt ′ distribu-
tion by a pure exponential with the MC generated life-
time. The ratio of the correction functions, shown in
Fig. 2(a), enters explicitly in Eq. (5) and its effects on
the asymmetry are less than 1.3% compared to when
no corrections are applied. The FOCUS data contains
more �D0 thanD0 decays due to production asymme-
try [19]. The effect on theACPT distribution is to add
a constant offset, which is accounted for in the fit.

3. Fitting for the asymmetry

TheACPT data in Fig. 2(b) are fit to a line using the
form of Eq. (4) plus a constant offset. The value ofΓ
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Fig. 2. (a) The ratio of the corrections; (b)ACPT as a function of
reduced proper time. The data points represent theACPT as given
in Eq. (5) and the solid line represent the fit given in functional
form by Eq. (4); (c) Reξ as a function of Greenwich Mean Sidereal
Time (GMST).

used in the fit isΓ = 1.6 × 10−12 GeV. The result of
the fit is(Reξ)y − (Im ξ)x = 0.0083± 0.0065.

4. Lorentz violation

Any CPT and Lorentz violation within the Standard
Model is described by the Standard Model Extension
(SME) proposed by Kostelecký et al. [20]. In quan-
tum field theory, the CPT violating parameterξ must
generically depend on lab momentum, spatial orienta-
tion, and sidereal time [3,21]. The SME can be used
to show that Lorentz violation in theD system is con-
trolled by the four-vector�aµ. The precession of the
experiment with the earth relative to the spatial vec-
tor ��a modulates the signal for CPT violation, thus
making it possible to separate the components of�aµ.

The coefficients for Lorentz violation depend on the
flavor of the valence quark states and are model inde-
pendent. In the case of FOCUS, whereD0 mesons in
the lab frame are highly collimated in the forward di-
rection and under the assumption thatD0 mesons are
uncorrelated, theξ parameter assumes the following
form [3]:

ξ(t̂ , p)= γ (p)

�λ

[
�a0 + β�aZ cosχ

(6)+ βsinχ
(
�aY sinΩt̂ +�aX cosΩt̂

)]
.

Ω and t̂ are the sidereal frequency and time, respec-
tively, X,Y,Z are non-rotating coordinates withZ
aligned along the Earth’s rotation axis,�λ = Γ (x −
iy), andγ (p) =

√
1+ P 2

D0/m
2
D0. Binning in sidereal

time t̂ is very useful because it provides sensitivity to
components�aX and�aY . Since Eq. (15) of Ref. [3]
translates into(Reξ)y − (Imξ)x = 0, setting limits on
the coefficients of Lorentz violation requires expand-
ing the asymmetry in Eq. (3) to higher (non-vanishing)
terms. In addition, the interference term of right-sign
decays with the doubly Cabibbo-suppressed (DCS)
decays must also be included since it gives a compara-
ble contribution. One can follow the procedure given
by Eqs. (16) to (20) of Ref. [3] where the basic transi-
tion amplitudes〈f |T |�P 0〉 and〈f̄ |T |P 0〉 are not zero
but are DCS amplitudes. After Taylor expansion the
asymmetry can be written as:

ACPT= (Reξ)(x2 + y2)(t/τ )2

2x

(7)

×
[
xy

3
(t/τ )+ √

RDCS(x cosδ + y sinδ)

]
,

whereRDCS is the branching ratio of DCS relative to
right-sign decays andδ is the strong phase between the
DCS and right-sign amplitudes.

5. Fitting for LV parameters

We searched for a sidereal time dependence1 by di-
viding our data sample into four-hour bins in Green-

1 Sidereal time is a time measure of the rotation of the Earth with
respect to the stars, rather than the Sun. Sidereal day is shorter than
the normal solar day by about 4 minutes.
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wich Mean Sidereal Time (GMST) [22], where for
each bin we repeated our fit int ′ using the asymme-
try given by Eq. (7) and extracted Reξ . The value of√
RDCS used in the fit is taken from Ref. [17] and it

is 0.06. The resulting distribution, shown in Fig. 2(c),
was fit using Eq. (6) and the results for the expressions
involving coefficients of Lorentz violation in the SME
were

C0Z ≡N(x,y, δ)(�a0 + 0.6�aZ)

= (1.0± 1.1)× 10−16 GeV,

CX ≡N(x,y, δ)�aX = (−1.6± 2.0)× 10−16 GeV,

CY ≡N(x,y, δ)�aY = (−1.6± 2.0)× 10−16 GeV,

where

N(x,y, δ)= [
xy/3+ 0.06(x cosδ + y sinδ)

]
is the factor which carries thex, y andδ dependence.
The angle between the FOCUS spectrometer axis
and the Earth’s rotation axis is approximatelyχ =
53◦ (cosχ = 0.6). We average over allD0 momentum
so 〈γ (p)〉 ≈ γ (〈p〉) = 39 andβ = 1. We also touched
base with the previous measurements for the kaonrK
andB mesonrB by constructing a similar quantity
rD [6],

rD = |�Λ|
mD0

= βµ�aµ

mD0
= |ξ | · |�λ|

= γ (p)|�a0 + 0.6�aZ|
mD0

.

The result forN(x,y, δ)rD is: N(x,y, δ)rD = (2.3±
2.3) × 10−16 GeV. Although it may seem natural to
reportrD , the parameterrD (andrK , rB ) has a serious
defect: in quantum field theory, its value changes with
the experiment. This is because it is a combination
of the parameters�aµ with coefficients controlled by
the D0 meson energy and direction of motion. The
sensitivity would have been best ifχ = 90◦.

6. Systematic errors

Previous analyses have shown that MC absorption
corrections are very small [11]. The interactions of
pions and kaons with matter have been measured but
no equivalent data exists for charm particles. To check
any systematic effects associated with the fact that the

charm particle cross section is unmeasured, we exam-
ined several variations ofD0 and �D0 cross sections.
The standard deviation of these variations returns sys-
tematic uncertainties of±0.0017,±0.3× 10−16 GeV,
±0.0 × 10−16 GeV, and±0.1 × 10−16 GeV to our
measurements of(Reξ)y − (Imξ)x, C0Z , CX , and
CY , respectively.

In a manner similar to theS-factor method used by
the Particle Data Group (PDG) [17] we made eight
statistically independent samples of our data in order
to look for systematic effects. We split the data in four
momentum ranges and two years. The split in year
was done to look for effects associated with target
geometry and reconstruction due to the addition of
four silicon planes near the targets in January, 1997
[23]. We found no contribution to our measurements
of (Reξ)y − (Im ξ)x andC0Z . The contributions for
CX and CY were ±1.3 × 10−16 GeV and±1.6 ×
10−16 GeV, respectively.

We also varied the bin widths and the position of
the sidebands to assess the validity of the background
subtraction method and the stability of the fits. The
standard deviation of these variations returns system-
atic uncertainties of±0.0012, ±0.3 × 10−16 GeV,
±0.9 × 10−16 GeV, and±0.5 × 10−16 GeV to our
measurements of(Reξ)y − (Imξ)x, C0Z , CX , and
CY , respectively.

Finally, to uncover any unexpected systematic un-
certainty, we varied our#/σ# and Wπ − WK re-
quirements and the standard deviation of these vari-
ations returns systematic uncertainties of±0.0036,
±1.5 × 10−16 GeV, ±1.0 × 10−16 GeV, and±1.1 ×
10−16 GeV to our measurements of(Reξ)y−(Im ξ)x,
C0Z , CX , andCY , respectively.

Contributions to the systematic uncertainty are
summarized in Table 1 and Table 2. Taking contri-
butions to be uncorrelated we obtain a total system-
atic uncertainty of±0.0041 for (Reξ)y − (Im ξ)x,
±1.6 × 10−16 GeV for C0Z , ±1.9 × 10−16 GeV for
CX , and±2.0× 10−16 GeV forCY .

7. Summary

We have performed the first search for CPT and
Lorentz violation in neutral charm meson oscillations.
We have measured(Reξ)y − (Im ξ)x = 0.0083±
0.0065± 0.0041 which lead to a 95% confidence
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Table 1
Contributions to the systematic uncertainty

Contribution (Reξ)y − (Im ξ)x CX (GeV)

Absorption ±0.0017 ±0.0× 10−16

Split sample ±0.0000 ±1.3× 10−16

Fit variant ±0.0012 ±0.9× 10−16

Cut variant ±0.0036 ±1.0× 10−16

Total ±0.0041 ±1.9× 10−16

Table 2
Contributions to the systematic uncertainty

Contribution C0Z (GeV) CY (GeV)

Absorption ±0.3× 10−16 ±0.1× 10−16

Split sample ±0.0× 10−16 ±1.6× 10−16

Fit variant ±0.3× 10−16 ±0.5× 10−16

Cut variant ±1.5× 10−16 ±1.1× 10−16

Total ±1.6× 10−16 ±2.0× 10−16

level limit of −0.0068< (Reξ)y − (Imξ)x < 0.0234.
As a specific example, assumingx = 0 or Imξ = 0
and y = 1%, one finds Reξ = 0.83 ± 0.65 ± 0.41
with a 95% confidence level limit of−0.68< Reξ <

2.34. Within the Standard Model Extension, we set
three independent first limits on the expressions in-
volving coefficients of Lorentz violation of(−2.8 <

N(x,y, δ)(�a0 + 0.6�aZ) < 4.8) × 10−16 GeV,
(−7.0 < N(x,y, δ)�aX < 3.8) × 10−16 GeV, and
(−7.0 < N(x,y, δ)�aY < 3.8) × 10−16 GeV. As a
specific example, assumingx = 1%, y = 1% and
δ = 15◦ one finds the 95% limits on the coefficients
of Lorentz violation of (−3.7 < �a0 + 0.6�aZ <

6.5)×10−13 GeV,(−9.4<�aX < 5.0)×10−13 GeV,
and(−9.3<�aY < 5.1)×10−13 GeV. The measured
values are consistent with no CPT or Lorentz invari-
ance violation.
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