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Universidad Iberoamericana

Prolongación Paseo de la Reforma 880, México D.F., 01210, México
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Abstract: The dynamic optimization of a heating process for plastic sheet
production is modeled. The formulation is based on the representation of the
one-directional heating process taking place in this system, and includes kinetic
equations for the reaction of methylmethacrylate. The mathematical model is
cast as a Partial Differential Equation (PDE) system, and the optimal profile
calculation turns out to be a dynamic optimization problem with distributed
parameter systems. A simultaneous approach was selected to solve the dynamic
optimization problem. By the full discretization of all variables, a Non-Linear
Programming (NLP) model is obtained and solved by using the CONOPT solver.
We present results about the dynamic optimization of two plastic sheets of
different thickness and compared them against simpler operating policies.
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1. INTRODUCTION

It has been widely recognized that the transient
operation of processing equipment can be im-
proved by the use of optimal dynamic operation
policies (Kameswaran and Biegler, 2006). Up to
now, most of the dynamic optimization techniques
applications have been aimed at examining the
optimal transient behavior of lumped parameter
systems. As computing power and better large
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scale nonlinear solvers become available one of the
natural next steps consists in addressing the op-
timal dynamic behavior of distributed parameter
systems (Biegler et al., 2003).

For medium to large scale systems, two optimal
control methodologies seem to dominate the nu-
merical solution of optimal control problems. On
one hand, the resulting set of differential and al-
gebraic equations (DAE) comprising the dynamic
mathematical model of the addressed system is
subject to partial discretization of the output
variables and the remaining differential system is
numerically integrated (Allgor and Barton, 1999).
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This approach is commonly called the sequential
optimal control approach. On the other hand, in
the simultaneous approach both the set of ma-
nipulated and controlled variables are fully dis-
cretized leading to a set of algebraic equations.
Therefore, the optimal control problem is trans-
formed into a nonlinear program (Kameswaran
and Biegler, 2006). Although it has been claimed
that the sequential approach is easy to use it
has some disadvantages. Presently, it seems to
be unable to handle open-loop unstable systems
without previous stabilization. Quite the contrary,
it has been shown that the simultaneous ap-
proach is able to efficiently handle unstable sys-
tems (Flores-Tlacuahuac, 2005). Moreover, the si-
multaneous approach demand good initialization
strategies and normally state of the art nonlin-
ear solvers able to handle large systems arising
from system discretization. However, with ever
increasing advances in computing power and the
availability of large scale nonlinear optimization
solvers, it seems that the simultaneous approach
will be widely used for approaching large scale
and highly nonlinear optimal control problems.
Traditional poly-Methyl Methacrylate (PMMA)
manufacturing process is based on placing the
plastic sheets inside warm water baths to al-
low the polymerization reactions to proceed until
monomer and initiators are exhausted. However,
industrial experience indicates that the quality of
the PMMA plastic sheets tend to display wide
variations in molecular weight distributions due to
nonuniform heating patterns. To achieve uniform
polymerization properties, it has been suggested
to carry out the set of PMMA polymerization
reactions using an oven where heating proceeds by
circulating warm air. Initial pilot plant tests have
indicated that by using this last PMMA plastic
sheet manufacturing process, uniform molecular
weight distributions could be achieved. In this
work our aim is to propose optimal heating poli-
cies able to produce PMMA plastic sheets with
uniform temperature distributions. Even, when
presently no molecular weight distributions were
computed, forcing optimal heating profiles should
lead to PMMA plastic sheets with homogeneous
properties. In this paper we use the simultaneous
dynamic optimization framework to address the
optimal dynamic behavior of the cell-cast process
for PMMA plastic sheet manufacture.

2. CELL-CAST PROCESS

Process description. In the typical casting of
acrilic sheet, molds formed by two glass plates
which are separated by a peripheral gasket sealer
and clamped together, are filled with casting
syrup through a gap left in the gasket. The cast-
ing syrup is made up of partially polymerized

monomer (20%) which, once placed in the mold, is
inserted into a furnace which is heated by circulat-
ing warm air (see Figure1). It will be appreciated
that this prior art procedure, which has been
generally adopted by the industry with certain
variations an modifications for the production of
cast sheets of the indicated nature, is relatively
cumbersome. It is extremely important to control
the progress of the polymerization throughout the
procedure and to create suitable mild thermic
conditions which, in turn, requires speedy and
effective dissipation of excess heat, due to the
low heat capacity of air, effective control of the
thermal conditions during the operation is very
important, so that, the heating is affected by the
circulating air (Rivera-Toledo, 2006).

Fig. 1. Cell-cast process for PMMA plastic sheet
manufacture

Kinetic model. Besides the conventional chem-
ical kinetics, physical phenomena related to the
diffusion of various chemical reactive species
are very important in free-radical polymeriza-
tion reactions. In fact, at high monomer conver-
sions, almost all elementary reactions can become
diffusion-controlled. Reactions which are influ-
enced by diffusion phenomena include termination
of live macro-radicals (Odian, 1991), propagation
of a growing chain, and chemical initiation reac-
tions. Diffusion-controlled termination, propaga-
tion, and initiation reactions have been related
to the well-known phenomena of gel effect, glass
effect, and cage effect, respectively. In the past 30
years, several models have been published dealing
with the mathematical description of diffusion-
controlled kinetic rate constants in free-radical
polymerization (Dubé et al., 1997). The reac-
tion mechanism adopted here consists of a sim-
ple approximation for the well know free-radical
polymerization kinetics featuring straightforward
initiation, propagation, and termination reactions
(Achilias and Kiparissides, 1992). The following
assumptions are taken (1) the diffusion effect is
negligible since we are interested in the thermal
process behavior, then the polymer processing
is controlled by the chemical kinetic, (2) only
the mass balance for the monomer conversion,
initiator concentration and the zeroth moment
of growing radical distribution are considered.
PMMA mathematical model. The sheet re-
actor model is considered for the PMMA plastic
sheet production. For lack of space, in this paper
we indicate briefly some assumptions on which
the mathematical model rests, nevertheless, on
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previous work (Rivera-Toledo, 2006) we discuss
in detail the limitations and scopes of the model.
The mathematical model was derived assuming
that the heating source resulting from polymer
reaction is a function of the local temperature.
It was also assumed that polymer properties, like
density, heat capacity, thermal conductivity are
constants and they are average values for MMA
and PMMA. To get the one-dimensional dynamic
energy balance, the total heat entering and leaving
at the z coordinate was modeled by the Fourier
law and the rate of change of energy in the con-
trol volume was obtained applying the shell en-
ergy balance method. From a reaction engineering
point of view, the PMMA plastic sheet process can
be considered as taking place in a constant volume
batch reactor. Dynamic mass and energy balances
coupled trough polymerization kinetics (Achilias
and Kiparissides, 1992) describe monomer conver-
sion, initiator concentration and the zeroth mo-
ment of growing radical distribution dynamic time
evolution. Air is circulated through the forced
convection mechanism inside the oven to provide
the required energy to rise up the plastic sheet
temperature until a point where significant poly-
merization rates take place. Inside the monomer,
the dominant heat transfer mechanism is conduc-
tion.

The modeling equations for the sheet reactor
consist of the following energy and mass balances:

∂T

∂t
= α

∂2T

∂z2
− h

ρCpH
(T − Ta) +

Qrxn

ρCpH
(1)

dX

dt
= kp(1−X)λ0 (2)

dλ0

dt
=− ελ2

0

1 + εX
kp(1−X) + 2fkdI − ktλ

2
0 (3)

dI

dt
=−kdI − εI

1 + εX
λ0kp(1−X) (4)

and the initial and boundary conditions are given
by

t = 0 T = T0, X = X0, λ0 = λ00 , I = I0, 0 6 z 6 L

z = 0 ,−k
∂T

∂z
= h(T − Ta), ∀ t > 0 (5)

z = L ,
∂T

∂z
= 0, ∀ t > 0

where T is the polymer temperature, T0 is the ini-
tial monomer temperature, Ta is the surrounding
temperature, t is the polymerization time, z is the
axis for the sheet length, X is the monomer con-
version, λ0 is the zeroth moment of growing rad-
ical distribution, I is the initiator concentration,
L is the sheet length , H is the sheet thickness, k
is the monomer average thermal conductivity, ρ is
the density, Cp is the heat capacity, f is the ini-
tiator efficiency, ε is the volume expansion factor,

α is the thermal diffusivity, h is the heat transfer
coefficient, kd, kp, kt are the kinetic coefficients
for initiator, propagation and termination stages,
respectively, and Qrxn stands for the heat released
by the polymerization reactions.

The dimensionless variables for the polymer tem-
perature, air temperature, position, time, zeroth
moment of growing radical distribution and the
initiator concentration are defined as follows:

θ =
T

T0
, θa =

Ta

T0
, ζ =

z

L

τ =
αt

H2
, λ̄0 = ln(λ0), Ī =

I

I0

the set of energy and mass balances and initial and
boundary conditions, are written in dimensionless
form as:

∂θ

∂τ
= a2 ∂2θ

∂ζ2
+ Bi(θa − θ) +

A9
(1−X)2

1 + εX
eλ̄0−A2/θ (6)

dX

dτ
= A1(1−X)eλ̄0−A2/θ (7)

dλ̄0

dτ
=−A4

1−X

1 + εX
eλ̄0−A2/θ + A6e

−λ̄0−A5/θ −

A7e
λ̄0−A8/θ (8)

dĪ

dτ
= A4

1−X

1 + εX
eλ̄0−A2/θ −A3e

−A5/θ (9)

τ = 0 θ = θ0, X = X0, λ̄0 = ln(λ00), Ī = 1, ∀0 6 ζ 6 1

ζ = 0
∂θ

∂ζ
= Bi(θa − θ), ∀τ > 0 (10)

ζ = 1
∂θ

∂ζ
= 0, ∀τ > 0

where Bi = hH/k is the Biot number.

3. DYNAMIC OPTIMIZATION

To compute dynamic optimal heating profiles we
use the following objective function:

min
∫ τ

0

[(
1− θ

θd

)2

+
(

1− θa

θd
a

)2
]

dτ (11)

subject to the partial differential and algebraic
equations (PDAE) and the initial and boundary
conditions (6-10). In the above equation θd and θd

a

stand for the desired values of plastic sheet and air
temperatures, respectively. Our aim is to compute
the air temperature as time function θa(t) so to
drive the plastic sheet temperature θ to its desired
profile as soon as possible.
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Using the simultaneous approach for solving the
dynamic optimization problem given by the ob-
jective function (Eq.11) and the PDAE (Eqs.6-
10) problem, these were converted into a NLP
problem by approximating the states (θ, X, Ī, λ̄)
and control (θa) variables by the application of the
method of lines (Schiesser, 1991) for the spatial
coordinate and orthogonal collocation on finite
elements for handling the time coordinate. The
discretized NLP problem is given by the objective
function:

min
θamk

Ne∑
m=1

∆τm

Nc∑

k=1

Nz∑

j=1

[(
1− θmkj

θd

)2

+ ωa

(
1− θamk

θd
a

)2
]

(12)

The discretized energy balance is given by the
following two algebraic equations:

θmkj = θ0
mj + ∆τmτtr

Nc∑
n=1

Ankθ̇mnj (13)

where θ0
mj is the temperature at starting point at

each element, ∆τm is the length of m − th finite
element, τtr is the operating time, and

θ̇mnj =
a2

∆ζ2
(θmnj+1 − 2θmnj + θmnj−1) +

Bi(θamn − θmnj) +

A9
(1−Xmnj)2

1 + εXmnj
eλ̄0mnj

−A2/θmnj (14)

j = 2, 3, ..., Nz − 1

where ∆ζ is the grid spacing for dimensionless
length, the following algebraic equations are given
by the boundary conditions:

−3θmn1 + 4θmn2 − θmn3

2∆ζ
+ Bi(θmn1 − θamn) = 0

4θmnNz
− 3θmnNz−1 + θmnNz−2 = 0(15)

m = 1, 2, ..., Ne, n = 1, 2, ..., Nc

the temperature continuity of each element using
the Lagrange orthogonal polynomial:

θ0
mj = θ0

m−1j + ∆τm−1τtr

Nc∑
n=1

AnNcθ̇m−1nj (16)

the starting values are θ0
1j = θ0, θa11 = θa0

The discretized mass balances for the monomer
conversion, initiator concentration and the zeroth
moment of growing radical distribution are:

Xmkj = X0
mj + ∆τmτtr

Nc∑
n=1

AnkẊmnj

λ̄0mkj
= λ̄0

0mj
+ ∆τmτtr

Nc∑
n=1

Ank
˙̄λ0mnj (17)

Īmkj = Ī0
mj + ∆τmτtr

Nc∑
n=1

Ank
˙̄Imnj

where X0
mj , λ̄

0
0mj

, Ī0
mj are evaluated at starting

point at each element and

Ẋmnj = A1(1−Xmnj)e
λ̄0mnj

−A2/θmnj

˙̄λ0mnj =−A4
1−Xmnj

1 + εX
eλ̄0mnj

−A2/θmnj +

A6e
−λ̄0mnj

−A5/θmnj −
A7e

λ̄0mnj
−A8/θmnj (18)

˙̄Imnj = A4
1−Xmnj

1 + εXmnj
eλ̄0mnj

−A2/θmnj −

A3e
−A5/θmnj

The continuity constraints between each element
are:

X0
mj = X0

m−1j + ∆τm−1τtr

Nc∑
n=1

AnNcẊm−1nj

λ̄0
0mj

= λ̄0
0m−1j

+ ∆τm−1τtr

Nc∑
n=1

AnNc
˙̄λ0m−1nj

Ī0
mj = Ī0

m−1j + ∆τm−1τtr

Nc∑
n=1

AnNc
˙̄Im−1nj (19)

the starting values are X0
1j = X0, Ī0

1j = 1, λ̄0
01j

=
ln(λ0), at j = 1, 2, ..., Nz. At this mathematical
formulation, the notation for subscripts indices
were used to represent points in time and position.
For example, θmkj denotes the value of dimension-
less temperature at the m − th element, k − th
collocation point at the temporal mesh, and the
j − th position point for the sheet length. Ne is
the number of finite elements, Nc is the number of
collocation points, and Nz is the number of points
for discretization on ζ-direction dimensionless.

4. RESULTS

The dynamic optimization model for PMMA
given by Eqs. (6-11) was cast as a NLP problem
by Eqs. (12-19), using the simultaneous approach.
In this section, we present a comparison between
dynamic optimal heating profiles against simpler
operating policies. The analysis was done for two
plastic sheet thicknesses, 3 mm and 6 mm. It
should be stressed that “simpler” operating poli-
cies mean that the air temperature was always
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kept constant at 50 oC. The numerical results
for the two cases presented here were obtained
on a Pentium IV computer with 2.8 GHz clock
speed and 512 KB RAM. Table 1 summarizes
the parameters used for the two addressed cases.
The NLP problem was solved using the CONOPT
NLP solver embedded in the GAMS algebraic
modelling system (Brooke et al., 1998). In Fig-

Table 1. Coefficients for PDE system

Coefficient 3 mm 6 mm

A1 6.1539x108 2.4616x109

A2 6.7786x100 6.7786x100

A3 1.3184x1018 5.2736x1018

A4 -1.4626x108 -5.8503x108

A5 4.76514x101 4.76514x101

A6 1.3812x1018 5.5248x1018

A7 1.2266x1011 4.9064x1011

A8 1.0916x100 1.0916x100

A9 4.4036x108 1.7614x108

a 5.555x10−4 1.111x10−3

Bi 5.3366 10.6731

ures 2 and 3, the results of using dynamic opti-
mal heating profiles for two different thicknesses
are compared against results obtained using the
simpler operating policy. The last results were
obtained by the numerical integration of Eqs.
(6-10) imposing constant air temperature. Using
the method of lines, the discretization scheme
required five points along the position and 30
finite elements and two internal collocation points
for the time coordinate for a plastic sheet of 3
mm thickness. The objective function is 0.8983,
the optimal solution was obtained in 10.4 minutes
CPU time. The desired temperature value along
the plastic sheet is 50oC or θ = 1 (dimensionless
temperature). The dynamic optimal air temper-
ature profile to achieve the desired temperature
value is depicted in Figure 2(a). As it can be seen
from Figure 2(b), a good conversion is obtained,
92% at 50 minutes, while keeping constant the air
temperature required 200 minutes to achieve the
same conversion value. The zeroth living moment
gradually increases with the polymerization tem-
perature, but suddenly, a peak appears and it is
related to the thermal effects due to contribution
from the heat of reaction. At this moment, the
air temperature fell down to remove the heat
generated by the polymer reaction. In Figure 2(c)
the polymer plastic sheet temperature profile is
shown along the time at five points on the plastic
sheet (see Figure 1). Note that, using the optimal
heating pattern, the desired temperature value is
achieved for all points in less time compared to the
the simpler operating policy. As depicted in this
Figure, due to the warm air flow direction, the
temperature increases gradually along the plastic
sheet; at z = 0 the dynamic temperature behavior
is almost the same as the air temperature, but at
z = L, the biggest peak temperature is located

there, because the heat removal capacity is de-
creased. At Figure 3, the dynamic optimization
responses are shown for a 6 mm thickness plastic
sheet. The discretization scheme required 40 fi-
nite elements with two internal collocation points
for the time coordinate. The objective function
value is 2.8419. The optimal solution profiles were
computed in around 18 minutes CPU time. It can
be seen that the maximum value of the air tem-
perature was higher than for the 3 mm thickness
plastic sheet because the heat conduction resis-
tance is two times greater. The dynamic behavior
for the conversion and zeroth moment are similar
to above case. The time value to get the same
monomer conversion (92%) is around 40 minutes
for the optimal operation and 123 minutes for the
case where a constant heating profile was imposed.
We think that the model can represent of reliable
way the process of polymerization because the
oven gets ready of the devices for to achieve the
manipulation of the temperature. However, the
main advantage of using dynamic optimal heating
profiles is that undesired effects, such as bubble
formation, might be avoided.

5. CONCLUSIONS

The computation of dynamic optimal heating pro-
files for the cell-cast MMA process was addressed.
A comparison of model response, using two plastic
sheet thicknesses, between the optimal heating
profiles and an heuristic operating policy, con-
sisting in keeping constant the air temperature,
was done. It was found that the dynamic optimal
heating profiles achieved the desired plastic sheet
temperature in less time compared to the heuristic
operating policy. Even when the thermal and ki-
netic effects of the addressed systems are complex,
the computational load for finding optimal solu-
tions was relatively modest. Therefore, real time
control of the addressed polymerization system
seems to be feasible and it will be addressed in
a future work.
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