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This paper presents the extension of leader-follower behaviours, for the case of a combined set of kinematic models of
omnidirectional and differential-drive wheeled mobile robots. The control strategies are based on the decentralized measurements
of distance and heading angles. Combining the kinematic models, the control strategies produce the standard and newmechanical
behaviours related to rigid body or 𝑛-trailer approaches.The analysis is given in pairs of robots and extended to the case of multiple
robots with a directed tree-shaped communication topology. Combining these behaviours, it is possible tomake platoons of robots,
as obtained from cluster space or virtual structure approaches, but now defined by local measurements and communication of
robots. Numerical simulations and real-time experiments show the performance of the approach and the possibilities to be applied
in multirobot tasks.

1. Introduction

The coordination of multiple mobile robots has found a
wide field of applications in the industry, surveillance, home
services, logistics, among others [1]. It extends the classical
problems of point convergence and trajectory tracking of
a unique mobile robot to the case of collective behaviours
like the convergence to formation patterns, formation track-
ing, dispersion, containment, interrobot collision avoidance,
etc. The design of formation patterns has been studied in
structured and behavioural approaches and the approaches
inspired on multicellular mechanism, according to [2]. The
possible interactions between robots are represented by a
communication topology which is predefined by the designer
or by the proximity of the robots.The control laws require the

feedback of the global position of the robots or their relative
displacements, distances, and angles according to the sensor
installed in the workspace or locally in the robots [3–5].

The problem of formation tracking requires the simulta-
neous convergence of the robots to a formation pattern and
a target or trajectory. The most basic scheme of multirobot
formation tracking is the case of two robots, where a leader
follows the trajectory, and the follower agent must satisfy
a relative posture with respect to the leader. In a decen-
tralized manner, the control strategy depends on the local
measurements of distance and heading or absolute angles. A
pioneer work can be found in [6], where a follower robot is
formed with respect to one or two leaders. In [7] the desired
position of the follower is given by a virtual unicycle robot.
The estimation of the posture of a single leader is given in
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[8]. The leader-follower behaviour designed for two robots is
extended to multiple robots in [9], to achieve directed tree-
shaped configurations. All the previous works analyse the
local convergence only and infer the global convergence in
the settling times, but they avoid formal proofs about the
stability of the whole system, with an arbitrary number of
robots.

On the other hand, the study of the global convergence
of distance-based formation control has been studied in the
context of formation graphs [10]. Such is the case of [11]
using distances and PI controllers, time-varying formation
in [12], the addition of area constraints in [13, 14] for
triangle formations, or the use of Model Predictive Con-
trol based on neural-dynamic optimization in [15], among
others. In the context of formation graphs, the extension
of the leader-follower formations is falling in the case of
directed graphs with a unique leader node, as presented in
[16]. A unified, distributed formation control scheme that
accommodates an arbitrary number of group leaders and
an arbitrary information flow among vehicles is presented
in [17]. The architecture requires the local information
exchange among neighbours only. An extended consensus
algorithm is applied on the group level to estimate the time-
varying group trajectory information. Using the estimated
group trajectory information, a consensus-based distributed
formation control strategy is then applied for the vehicle level
control. In [18], a merging strategy for cooperative vehicles
is addressed. Each vehicle possesses a tracking controller
considering both tracking and coupling error signals, where
all vehicles in the group know their positions.The trajectories
of the cooperative vehicles are planned, to guarantee that each
vehicle keeps a certain distance from the rest of the vehicles,
and are designed by using the virtual structure approach.The
merging strategy is validated in an experimental platform
consisting of a group of nonholonomic mobile vehicles
representing a basic bicycle model for cars with a zero vehicle
length. Using the Lyapunov theory, it is showed that the
strategy is global asymptotically stable for the group. In [19],
the authors propose a hierarchical control scheme based
on the definition of multirobot task functions. The scheme
faces the following tasks for controlling the behaviour of
multirobot systems: (1) the time parametrization of tasks
and (2) smooth task transitions. It is demonstrated that both
aspects can be solved by means of terminal attractors. Also
the robustness and versatility of the proposed scheme with
global tasks in simulation and one experiment considering
local tasks with a set of wheeled robots are verified.

For the case of wheeled mobile robots moving in the
plane, the kinematic and dynamic models commonly used
in industrial and service applications are the differential-
drive mobile robots and the omnidirectional (with mecanum
and omnidirectional wheels) robots [20]. Example of imple-
mentation of these wheeled mobile robots is found in [21],
for the case of real object transportation. Also, the work
in [22] addresses a tractor convoy used in agriculture to
move loads and following waypoints. Finally, in [23] the
object transportation in an industrial area collaborating with
unmanned aerial robots is presented.

Experimental work for the previous wheeled mobile
robots, mostly for the case of differential-drive robots, has
been presented in [24] considering the dynamics of their
on-board leader trackers. The on-board cameras perspective
and calibration are studied in [25], and the bounded single-
view distance estimation of cameras is presented in [26].
Control laws to maintain the visibility of the leader in the
presence of obstacles are given in [27]. Nonlinear estimators
for aircrafts using a seeker sensor are presented in [9]. Finally,
the possible reassignation of the leader based on an affection
fuzzy measurement is proposed by [28].

For the extension of the leader-follower strategies, to the
case of collaborative object transportation or target tracking,
some global interrobot structures are imposed for the robots.
The first case is the generation of virtual trajectories or
navigation functions for the followers, moving with respect
to the leader, as in [29]. The second strategy is the creation
of virtual robots or targets placed on the center of circles
to generate polygons-shaped formations for the followers
[30]. This idea is extended for column subgroups of robots
with center of rotation in a hierarchical setup in [31]. The
third concept is the definition of virtual structures, where
the desired position of the robots is defined in a structure
which is moved along a trajectory. Therefore, the control
for each robot is designed to converge to its global position
in the structure. Some examples are given in [32], with a
human operator moving the virtual structure, [33] for the
case of intelligent vehicles, [34] using the dynamical model
of the virtual structure and [35] for some infinitesimally and
minimally rigid frameworks. A special virtual structure is the
so-called 𝑉-shape formation, where a leader is placed in a
root node, and lines of followers are placed with respect to a
global angle related to the root node [36]. Finally, the concept
of imposing a moving global structure is also referred to as
the cluster space specifications in [37, 38], which imposes
the dynamics of an object to be transported and specifies the
positions of the robots under these object. Note that all the
previous strategies impose for the robots the knowledge of
global coordinates, velocities, and other dynamical references
to be measured.

Inspired by [6] and our previous work of distance-based
formation control given in [4, 39], this paper contributes
to the context of the leader-follower formation of wheeled
mobile robots. The originality and contributions are summa-
rized in the next points:

(i) This paper addresses the leader-follower behaviour
applied to the kinematicmodel of the omnidirectional
robot. A differential-drive model can be obtained
by cancelling the lateral linear velocity. Therefore,
the approach becomes heterogeneous combining the
most common wheeled vehicles used in the practice.

(ii) Four basic leader-follower control laws are defined
due the combination of the omnidirectional and
differential-drive robots. The local convergence is
proved. It extends the results of [6] and the case
presented in [39], limited only to two omnidirec-
tional robots. The control laws are designed to be
decentralized using the measurement of distance
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Figure 1: Schematic diagram for the leader-follower approach.

and the heading angle with respect to the leader,
avoiding the use of global references as mentioned
before. Furthermore, they require the velocities from
the leader which can be obtained from a wireless
communication.

(iii) It is proved that the robots converge to the classical
rigid motion behaviour and the standard 𝑛-trailer.
Also, by the heterogeneous concept of the system, we
introduce a newmechanical device called omnitrailer.
As far as we know, the demonstration of these local
behaviours in the settling time has not been reported
in the literature.

(iv) It is shown that the extension of the four control laws
can generate formation tracking, useful for object
transportation or collaborative tasks if the robots
satisfy a directed tree-shaped topology. By numerical
simulation, convoy-like formation of rigid platoons of
robots can be achieved.Thus, it is possible to generate
complex behaviours like virtual structures or cluster
space specifications, avoiding the information of a
global reference framework.

(v) Finally, the control approach is evaluated by a numer-
ical simulation and experimental work using, in a first
step, a motion capture system.

The paper is organized as follows. The problem definition is
given in Section 2. Some preliminaries are given in Section 3,
while themain results about the control strategies are defined
and analysed in Section 4. The extension to groups of mobile
robots in directed tree-shaped formation tracking is given by
numerical simulations in Section 5. Real-time experiments
are presented in Section 6. Finally, some conclusion remarks
and future work are presented in Section 7.

2. Problem Definition

Let𝑁 = {𝑅1, . . . , 𝑅𝑛} be a group of 𝑛 omnidirectional robots
(see Figure 1). The kinematic model of the omnidirectional
robots is given by

𝜉̇𝑖 = 𝑅 (𝜃𝑖) ui, 𝑖 = 1, . . . , 𝑛, (1)

where 𝑅(𝜃𝑖) is the rotation matrix defined by

𝑅 (𝜃𝑖) = [[
[
cos 𝜃𝑖 − sin 𝜃𝑖 0
sin 𝜃𝑖 cos 𝜃𝑖 0
0 0 1

]]
]
, (2)

𝜉𝑖 = [𝑥𝑖 𝑦𝑖 𝜃𝑖]⊤ ∈ R3 is the state vector with 𝑥𝑖, 𝑦𝑖 ∈
R as the position in the plane of the 𝑖−th agent, 𝜃𝑖 ∈ R

is the orientation with respect to the horizontal axis, u𝑖 =[V𝑥𝑖 V𝑦𝑖 𝑤𝑖]⊤ is the control input vector with V𝑥𝑖 ∈ R as
the longitudinal velocity, V𝑦𝑖 ∈ R is the lateral velocity, and𝑤𝑖 ∈ R is the angular velocity.

Remark 1. It is worth mentioning that if the lateral velocity
V𝑦𝑖 = 0, for all time in (1), one can obtain the kinematicmodel
of a differential-drive robot given by

𝜉̇𝑖 = [[
[
cos 𝜃𝑖 0
sin 𝜃𝑖 00 1

]]
]
[V𝑥𝑖𝑤𝑖] 𝑖 = 1, . . . , 𝑛. (3)

It is clear that a physical differential-drive robot and any
kind of physical omnidirectional robot, suppressing its lateral
velocity V𝑦𝑖 , can perform the motion given in (3). In the latter
case, the same robot can be switched between (1) and (3), as
shown below.

The focus of this article is to extend the results presented
in [39] to a group of 𝑛 agents. In this, a dynamic model, of
a multiagent heterogeneous system composed of omnidirec-
tional and differential-drive robots, based on the distance and
angle between a pair of robots will be developed, i.e.,

𝜂̇𝑗𝑖 = [ ̇𝑑𝑗𝑖 𝛼̇𝑗𝑖 ̇𝑒𝜃𝑗𝑖]⊤ = 𝑓 (𝑑𝑗𝑖, 𝛼𝑗𝑖, 𝑒𝜃𝑗𝑖 , u𝑗, u𝑖) , (4)

where𝑑𝑗𝑖 ∈ R+ is the distancemeasured from the geometrical
center of agent 𝑅𝑗 to the geometrical center of the agent 𝑅𝑖,
withR+ as the set of all positive real numbers, 𝑑𝑗𝑖𝑥 and 𝑑𝑗𝑖𝑦 ∈
R+ are the components of the distance vector 𝑑𝑗𝑖 with respect
to a global frame, 𝛼𝑗𝑖 ∈ R is the formation angle measured
from the distance vector 𝑑𝑗𝑖 to a local frame attached to the
agent 𝑅𝑖, and u𝑗 and u𝑖 are the vector control inputs, for the
leader and follower, respectively, while 𝑒𝜃𝑗𝑖 is the orientation
error angle between the leader and the follower. Note that
(4) is a general representation of the model and, as it will
be shown, particular cases will be defined later on. Once the
model is obtained, a control strategy is designed, such that

(i) lim𝑡󳨀→∞(𝑑𝑗𝑖 − 𝑑∗𝑗𝑖) = 0, where 𝑑∗𝑗𝑖 is the desired
distance;

(ii) lim𝑡󳨀→∞(𝛼𝑗𝑖 − 𝛼∗𝑗𝑖) = 0, where 𝛼∗𝑗𝑖 is the desired angle.
This means that 𝑅𝑖 will keep a distance and heading orienta-
tion with respect to 𝑅𝑗. Depending on the kinematics model
of both robots (omnidirectional or differential-drive), some
control laws, developed in Section 4, will generate, in the
steady state, different mechanical structures.
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Figure 2: Motion equation of two points of a rigid body.

3. Preliminaries

A reminder of the rigid motion equation, the kinematic
model of the standard 1-trailer, and a new rigid structure will
be given in this section. This will help us to validate the main
results of this article.

3.1. Rigid Body Motion Equation. The velocity relationship
between any two points of a rigid body (see Figure 2) can be
expressed by the rigid body motion equation [20] given as

k𝑄 = k𝑃 + 𝑤𝐵 × 𝑟𝑃𝑄, (5)

where k𝑃 and k𝑄 are the velocities of the points 𝑃 and 𝑄,
respectively,𝑤𝐵 is the angular velocity of the rigid body, 𝑟𝑃𝑄 is
the position vector from point 𝑃 to point𝑄, 𝜃𝑄 and 𝜃𝑃 are the
orientations of the velocities of points 𝑄 and 𝑃, respectively,
and 𝐿 is the distance between 𝑃 and 𝑄. Considering a two-
dimensional space, therefore, the rigid bodymotion equation
(5) has to satisfy the following expressions:

󵄨󵄨󵄨󵄨k𝑄󵄨󵄨󵄨󵄨 cos 𝜃𝑄 = 󵄨󵄨󵄨󵄨k𝑃󵄨󵄨󵄨󵄨 cos 𝜃𝑃 + 𝐿 ̇𝜃𝐵 sin 𝜃𝐵, (6a)

󵄨󵄨󵄨󵄨k𝑄󵄨󵄨󵄨󵄨 sin 𝜃𝑄 = 󵄨󵄨󵄨󵄨k𝑃󵄨󵄨󵄨󵄨 sin 𝜃𝑄 − 𝐿 ̇𝜃𝐵 cos 𝜃𝐵. (6b)

3.2. Kinematic Model of a Standard 1-Trailer. From Figure 1,
suppose that V𝑦𝑖 = V𝑦𝑗 = 0 and 𝛼𝑗𝑖 = 0. This means that
both agents are differential-drive robots. Consider that the
agents are linked through mechanical joints, obtaining the
scheme for the standard 1–trailer with kinematicmodel given
by (Rouchon et al. [40]; Orosco-Guerrero et al. [41]; Bushnell
et al. [42])

𝑥̇𝑗 = V𝑥𝑗 cos 𝜃𝑗, (7a)

̇𝑦𝑗 = V𝑥𝑗 sin 𝜃𝑗, (7b)

̇𝜃𝑗 = 𝑤𝑗, (7c)

̇𝜃𝑖 = V𝑥𝑗
sin (𝜃𝑗 − 𝜃𝑖)𝑑𝑗𝑖 , (7d)

where [𝑥𝑗 𝑦𝑗]⊤ ∈ R2 are the coordinates of the midpoint
of the wheels axis of the tractor and 𝜃𝑗 and 𝜃𝑖 are the
orientation of the tractor and trailer, respectively, with respect

to the horizontal axis, while V𝑥𝑗 and 𝑤𝑗 are the control inputs
corresponding to the linear and angular velocities of the
tractor, respectively.Therefore, we have the following evident
result.

Lemma 2. The linear velocity of the trailer V𝑥𝑖 depends on the
linear velocity of the tractor V𝑥𝑗 and the orientations 𝜃𝑗 and 𝜃𝑖
and is given by

V𝑥𝑖 = V𝑥𝑗 cos (𝜃𝑗 − 𝜃𝑖) . (8)

3.3. Omnitrailer. Due to the heterogeneous structure of the
trailer system, it is possible to have an omnidirectional
robot as a tractor (leader robot) and, therefore, Lemma 2
can be extended. From Figure 1 suppose that V𝑦𝑖 = 0;
hence, 𝑅𝑖 is a differential-drive robot, which is pulled by an
omnidirectional robot and they are linked by a rigid bar of
length 𝑑𝑗𝑖. In consequence, we have the following evident
Lemma.

Lemma 3. The linear velocity V𝑥𝑖 and the angular velocity 𝑤𝑖
of the differential-drive robot depend on the velocities V𝑥𝑗 and
V𝑦𝑗 and the angles 𝜃𝑗 and 𝜃𝑖 and is given by

V𝑥𝑖 = V𝑥𝑗 cos (𝜃𝑗 − 𝜃𝑖) − V𝑦𝑗 sin (𝜃𝑗 − 𝜃𝑖) , (9a)

̇𝜃𝑖 = 1𝑑𝑗𝑖 [V𝑥𝑗 sin (𝜃𝑗 − 𝜃𝑖) + V𝑦𝑗 cos (𝜃𝑗 − 𝜃𝑖)] . (9b)

4. Control Strategy

In this section, the dynamic model, based on distance and
orientation, referred in (4), is developed considering, in a first
step, a group of 𝑛 omnidirectional robots.Then, by cancelling
some velocities it is possible to obtain a dynamic model
for a heterogeneous system, composed by omnidirectional
and differential-drive robots. In this context, four different
dynamic models are developed.

O − O Leader-Follower Scheme. Both agents 𝑅𝑖 and 𝑅𝑗 are
omnidirectional robots.

U−O Leader-Follower Scheme. Agent𝑅𝑗 is a differential-drive
robot and 𝑅𝑖 is an omnidirectional robot.

U − U Leader-Follower Scheme. Both agents 𝑅𝑖 and 𝑅𝑗 are
differential-drive robots.

O − U Leader-Follower Scheme. Agent 𝑅𝑗 is an omnidirec-
tional robot and agent 𝑅𝑖 is a differential-drive robot.

In a second step, four control strategies are designed, by
means of linearizing techniques, to achieve rigid platoons of
robots. Finally, a global control strategy is developed taking
into account a group of 𝑛mobile robots.
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4.1. O-O Leader-Follower Scheme. Based on Figure 1, the
distance 𝑑𝑗𝑖 and the angle 𝛼𝑗𝑖, with 𝑖 = 1, . . . , 𝑛 − 1 and𝑗 = 1, . . . , 𝑛, 𝑗 ̸= 𝑖, are given by

𝑑𝑗𝑖 = √(𝑥𝑗 − 𝑥𝑖)2 + (𝑦𝑗 − 𝑦𝑖)2 = √𝑑2𝑗𝑖𝑥 + 𝑑2𝑗𝑖𝑦 , (10a)

𝛼𝑗𝑖 = 𝜃𝑖 − tan−1 (𝑦𝑗 − 𝑦𝑖𝑥𝑗 − 𝑥𝑖) , (10b)

where 𝑑𝑗𝑖𝑥 = 𝑥𝑗 − 𝑥𝑖 and 𝑑𝑗𝑖𝑦 = 𝑦𝑗 − 𝑦𝑖. The time-derivative
of (10a) and (10b) is given by

̇𝑑𝑗𝑖 = 𝑑𝑗𝑖𝑥 ̇𝑑𝑗𝑖𝑥 + 𝑑𝑗𝑖𝑦 ̇𝑑𝑗𝑖𝑦𝑑𝑗𝑖 , (11a)

𝛼̇𝑗𝑖 = ̇𝜃𝑖 − 𝑑𝑗𝑖𝑥 ̇𝑑𝑗𝑖𝑦 − 𝑑𝑗𝑖𝑦 ̇𝑑𝑗𝑖𝑥𝑑2𝑗𝑖 , (11b)

with
̇𝑑𝑗𝑖𝑥 = V𝑥𝑗 cos 𝜃𝑗 − V𝑦𝑗 sin 𝜃𝑗 − V𝑥𝑖 cos 𝜃𝑖 + V𝑦𝑖 sin 𝜃𝑖, (12a)

̇𝑑𝑗𝑖𝑦 = V𝑥𝑗 sin 𝜃𝑗 + V𝑦𝑗 cos 𝜃𝑗 − V𝑥𝑖 sin 𝜃𝑖 − V𝑦𝑖 cos 𝜃𝑖. (12b)

Substituting (12a) and (12b) into (11a) and (11b) and consid-
ering that 𝑑𝑗𝑖𝑥 = 𝑑𝑗𝑖 cos(𝜃𝑖 − 𝛼𝑗𝑖) and 𝑑𝑗𝑖𝑦 = 𝑑𝑗𝑖 sin(𝜃𝑖 − 𝛼𝑗𝑖),
therefore (11a) and (11b) can be expressed as

𝜂̇𝑗𝑖 = 𝑓𝜂𝑗𝑖 (𝜂𝑗𝑖) u𝑗 + 𝑔𝜂𝑗𝑖 (𝜂𝑗𝑖) u𝑖, 𝑖 ̸= 𝑗, (13)

with

𝑓𝜂𝑗𝑖 =
[[[[[[
[

cos (𝑒𝜃𝑗𝑖 + 𝛼𝑗𝑖) − sin (𝑒𝜃𝑗𝑖 + 𝛼𝑗𝑖) 0
− sin (𝑒𝜃𝑗𝑖 + 𝛼𝑗𝑖)

𝑑𝑗𝑖 −cos (𝑒𝜃𝑗𝑖 + 𝛼𝑗𝑖)
𝑑𝑗𝑖 0

0 0 1

]]]]]]
]
, (14a)

𝑔𝜂𝑗𝑖 =
[[[[
[

− cos𝛼𝑗𝑖 sin𝛼𝑗𝑖 0
sin𝛼𝑗𝑖𝑑𝑗𝑖

cos𝛼𝑗𝑖𝑑𝑗𝑖 1
0 0 −1

]]]]
]
, (14b)

where 𝜂𝑗𝑖 = [𝑑𝑗𝑖 𝛼𝑗𝑖 𝑒𝜃𝑗𝑖]⊤ is the state vector and 𝑒𝜃𝑗𝑖 =𝜃𝑗 − 𝜃𝑖. Since both agents are omnidirectional mobile robots,
therefore, u𝑗 = [V𝑥𝑗 V𝑦𝑗 𝑤𝑗]⊤ and u𝑖 = [V𝑥𝑖 V𝑦𝑖 𝑤𝑖]⊤. Note
that (13) is a special case of the general model given in (4).

The static state feedback control, for system (13), is given
as

u𝑖 = 𝑔−1𝜂𝑗𝑖 (−𝑓𝜂𝑗𝑖u𝑗 + p𝑗𝑖) , (15)

where p𝑗𝑖 is defined by

p𝑗𝑖 = [[[
[

̇𝑑∗𝑗𝑖 − 𝑘𝑑𝑒𝑑𝑗𝑖𝛼̇∗𝑗𝑖 − 𝑘𝛼𝑒𝛼𝑗𝑖−𝑘𝜃𝑒𝜃𝑗𝑖
]]]
]
, (16)

with 𝑘𝑑, 𝑘𝛼, and 𝑘𝜃 being positive design gains, and 𝑒𝑑𝑗𝑖 =𝑑𝑗𝑖 − 𝑑∗𝑗𝑖 and 𝑒𝛼𝑗𝑖 = 𝛼𝑗𝑖 − 𝛼∗𝑗𝑖 are the distance error and the
formation orientation error, respectively.

Theorem 4. Consider system (13) in closed-loop with (15) and
(16); therefore, the error coordinates 𝑒𝑑𝑗𝑖 , 𝑒𝛼𝑗𝑖 , and 𝑒𝜃𝑗𝑖 tend to
zero, i.e., lim𝑡󳨀→∞ 𝑒𝑑𝑗𝑖 = lim𝑡󳨀→∞ 𝑒𝜃𝑗𝑖 = lim𝑡󳨀→∞ 𝑒𝛼𝑗𝑖 = 0.
Proof. The dynamics of the error coordinates are given by

ė𝑗𝑖 = 𝜂̇𝑗𝑖 − 𝜂̇∗𝑗𝑖, (17)

where e𝑗𝑖 = [𝑒𝑑𝑗𝑖 𝑒𝛼𝑗𝑖 𝑒𝜃𝑗𝑖]⊤,𝜂∗𝑗𝑖 = [𝑑∗𝑗𝑖 𝛼∗𝑗𝑖 0]⊤. Substituting
(13), (15), and (16) into (17), then, one obtains

ė𝑗𝑖 = −𝐾𝑗𝑖e𝑗𝑖, (18)

where 𝐾𝑗𝑖 = diag{𝑘𝑑, 𝑘𝛼, 𝑘𝜃} is a diagonal matrix. Note that−𝐾𝑗𝑖 is a Hurwitz matrix if 𝑘𝑑, 𝑘𝛼, and 𝑘𝜃 > 0; hence,
lim𝑡󳨀→∞ 𝑒𝑑𝑗𝑖 = lim𝑡󳨀→∞ 𝑒𝜃𝑗𝑖 = lim𝑡󳨀→∞ 𝑒𝛼𝑗𝑖 = 0 and the agent𝑅𝑖 keeps a distance and orientation with respect to the agent𝑅𝑗.
Remark 5. Note that theO-O Schemewas studied in [39] con-
sidering only two omnidirectional robots. However, part of
this work extends the results for a group of 𝑛 omnidirectional
robots.

4.2.U-O Leader-Follower Scheme

Proposition 6. Let 𝑅𝑗 be a differential-drive robot and 𝑅𝑖 be
an omnidirectional robot. In this sense, V𝑦𝑗 = 0 and the system
(13) is rewritten as

𝜂̇𝑗𝑖 = 𝑓𝜂𝑗𝑖 (𝜂𝑗𝑖) u𝑗 + 𝑔𝜂𝑗𝑖 (𝜂𝑗𝑖) u𝑖, 𝑖 ̸= 𝑗, (19)

where 𝑔𝜂𝑗𝑖 = 𝑔𝜂𝑗𝑖 , as in (14b), u𝑗 = [V𝑥𝑗 𝑤𝑗]⊤, u𝑖 =
[V𝑥𝑖 V𝑦𝑖 𝑤𝑖]⊤, and

𝑓𝜂𝑗𝑖 =
[[[[[[
[

cos (𝑒𝜃𝑗𝑖 + 𝛼𝑗𝑖) 0
− sin (𝑒𝜃𝑗𝑖 + 𝛼𝑗𝑖)

𝑑𝑗𝑖 0
0 1

]]]]]]
]
. (20)

The static state linearizing feedback control law is given by

u𝑖 = 𝑔−1𝜂𝑗𝑖 (−𝑓𝜂𝑗𝑖u𝑗 + p𝑗𝑖) , (21)

with the same auxiliary control given in (16).

Remark 7. Note that in the O − O andU − O leader-follower
scheme the determinant of the matrices 𝑔𝜂𝑗𝑖 and 𝑔𝜂𝑗𝑖 is the
same, i.e., det(𝑔𝜂𝑗𝑖) = det(𝑔𝜂𝑗𝑖) = 1/𝑑𝑗𝑖. Since the parameter𝑑𝑗𝑖 is the distance from agent 𝑅𝑗 to 𝑅𝑖, therefore 𝑑𝑗𝑖 > 0 and
matrices 𝑔𝜂𝑗𝑖 and 𝑔𝜂𝑗𝑖 will be always invertible. Furthermore,
if the parameter 𝑑𝑗𝑖 is close to zero, it implies that the agents
are very close to each other, which is not feasible, due to the
dimensional restrictions of the robots. Hence, in this scheme,
the control performance is not constrained.
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4.3.U-U Leader-Follower Scheme

Proposition 8. Let agents 𝑅𝑖 and 𝑅𝑗 be differential-drive
robots, hence, V𝑦𝑖 = V𝑦𝑗 = 0, and functions 𝑓𝜂𝑗𝑖 and 𝑔𝜂𝑗𝑖 , of
(14a) and (14b), are rewritten as

𝑓𝜂𝑗𝑖 =
[[[[[[
[

cos (𝑒𝜃𝑗𝑖 + 𝛼𝑗𝑖) 0
− sin (𝑒𝜃𝑗𝑖 + 𝛼𝑗𝑖)

𝑑𝑗𝑖 0
0 1

]]]]]]
]
,

𝑔𝜂𝑗𝑖 =
[[[[
[

− cos𝛼𝑗𝑖 0
sin𝛼𝑗𝑖𝑑𝑗𝑖 1
0 −1

]]]]
]
.

(22)

Taking into account the output function ĥ𝑗𝑖 = [𝑑𝑗𝑖 𝛼𝑗𝑖]⊤, the
following system is obtained:

̇̂h𝑗𝑖 = 𝑓ℎ𝑗𝑖 (ĥ𝑗𝑖, 𝑒𝜃𝑗𝑖) û𝑗 + 𝑔ℎ𝑗𝑖 (ĥ𝑗𝑖) û𝑖, (23)

with û𝑗 = [V𝑥𝑗 𝑤𝑗]⊤, û𝑖 = [V𝑥𝑖 𝑤𝑖]⊤ and

𝑓ℎ𝑗𝑖 =
[[[[
[

cos (𝑒𝜃𝑗𝑖 + 𝛼𝑗𝑖) 0
− sin (𝑒𝜃𝑗𝑖 + 𝛼𝑗𝑖)

𝑑𝑗𝑖 0
]]]]
]
,

𝑔ℎ𝑗𝑖 = [[
[
− cos𝛼𝑗𝑖 0
sin𝛼𝑗𝑖𝑑𝑗𝑖 1 ]]

]
.

(24)

Since det(𝑔ℎ𝑗𝑖) = − cos𝛼𝑗𝑖, with 𝛼𝑗𝑖 ̸= ±𝜋/2, then, it is possible
to define a linearizing feedback control law given by

û𝑖 = 𝑔−1ℎ𝑗𝑖 (−𝑓ℎ𝑗𝑖 û𝑗 + p̂𝑗𝑖) , (25a)

p̂𝑗𝑖 = [ ̇𝑑∗𝑗𝑖 − 𝑘𝑑𝑒𝑑𝑗𝑖𝛼̇∗𝑗𝑖 − 𝑘𝛼𝑒𝛼𝑗𝑖 ,] , (25b)

where 𝑒𝑑𝑗𝑖 = 𝑑𝑗𝑖 −𝑑∗𝑗𝑖, 𝑒𝛼𝑗𝑖 = 𝛼𝑗𝑖 −𝛼∗𝑗𝑖 are the distance error and
the formation orientation error, respectively, while 𝑘𝑑 and 𝑘𝛼
are positive design gains. Due to the simplified model obtained
for the differential-drive robots, the control law (25a) and (25b)
is related only for two control variables.

4.4. O-U Leader-Follower Scheme

Proposition 9. Let 𝑅𝑗 be an omnidirectional robot and 𝑅𝑖
be a differential-drive robot. In this context, V𝑦𝑖 = 0 and the
functions 𝑓𝜂𝑗𝑖 = 𝑓𝜂𝑗𝑖 , given in (14a), and 𝑔𝜂𝑗𝑖 = 𝑔𝜂𝑗𝑖 , given in
(22). Taking into account the output function h̃𝑗𝑖 = [𝑑𝑗𝑖 𝛼𝑗𝑖]⊤,
the following system is obtained:

̇̃h𝑗𝑖 = 𝑓ℎ𝑗𝑖 (h̃𝑗𝑖, 𝑒𝜃𝑗𝑖) ũ𝑗 + 𝑔ℎ𝑗𝑖 (h̃𝑗𝑖) ũ𝑖, (26)

with ũ𝑗 = [V𝑥𝑗 V𝑦𝑗 𝑤𝑗]⊤, ũ𝑖 = [V𝑥𝑖 𝑤𝑖]⊤ and

𝑓ℎ𝑗𝑖 =
[[[[
[

cos (𝑒𝜃𝑗𝑖 + 𝛼𝑗𝑖) − sin (𝑒𝜃𝑗𝑖 + 𝛼𝑗𝑖) 0
− sin (𝑒𝜃𝑗𝑖 + 𝛼𝑗𝑖)

𝑑𝑗𝑖 −cos (𝑒𝜃𝑗𝑖 + 𝛼𝑗𝑖)
𝑑𝑗𝑖 0

]]]]
]
,

𝑔ℎ𝑗𝑖 = [[
[
− cos𝛼𝑗𝑖 0
sin𝛼𝑗𝑖𝑑𝑗𝑖 1]]]

.
(27)

Since det(𝑔ℎ𝑗𝑖) = − cos𝛼𝑗𝑖, with 𝛼𝑗𝑖 ̸= ±𝜋/2, then, it is possible
to define a linearizing feedback control law given by

ũ𝑖 = 𝑔−1ℎ𝑗𝑖 (−𝑓ℎ𝑗𝑖 ũ𝑗 + p̃𝑗𝑖) , (28)

with p̃𝑗𝑖 = p̂𝑗𝑖.

Remark 10. Recall that the angle 𝛼𝑗𝑖 is the angle measured
from the distance vector 𝑑𝑗𝑖 to a local frame attached to
the agent 𝑅𝑖. In this sense, an angle 𝛼𝑗𝑖 = ±𝜋/2 means
that the component of the velocity perpendicular to the
wheels of the differential-drivemobile robots is aligned to the
distance vector 𝑑𝑗𝑖, and, due to the nonholonomic restriction
of this kind of vehicles, given by 𝑥̇𝑖 sin 𝜃𝑖 − ̇𝑦𝑖 cos 𝜃𝑖 = 0,
then the motion, perpendicular to the linear velocity, is
zero. Therefore, the restriction of 𝛼𝑗𝑖 ̸= ±𝜋/2 implies the
nonholonomic restriction of the differential-drive mobile
robots.

Remark 11. By a similar procedure to Theorem 4, it can
be shown that from system (19) with control (21) the
error coordinates will converge to zero, i.e., lim𝑡󳨀→∞ 𝑒𝑑𝑗𝑖 =
lim𝑡󳨀→∞ 𝑒𝜃𝑗𝑖 = lim𝑡󳨀→∞ 𝑒𝛼𝑗𝑖 = 0. Furthermore, from system
(23) with control (25a) and (25b) and system (26) with
control (28), the errors 𝑒𝑑𝑗𝑖 and 𝑒𝛼𝑗𝑖 will converge to zero, i.e.,
lim𝑡󳨀→∞ 𝑒𝑑𝑗𝑖 lim𝑡󳨀→∞ 𝑒𝛼𝑗𝑖 = 0.
4.5. Global Control Strategy. This subsection states a relevant
contribution of the article. Specifically, a global control
strategy is developed to ensure that a group of agents,
composed by omnidirectional and differential-drive mobile
robots, converge to a desired distance and formation angle.

Recall that 𝑁 is a group of 𝑛 agents where 𝑅𝑛 is the
leader, represented by an omnidirectionalmobile robot, while
the rest are the followers that could be omnidirectional or
differential-drive mobile robots, and suppose that 𝑗 > 𝑖, then,
the dynamic model of the group can be represented by

𝜁̇ = LU, (29)

where 𝜁 is the state vector containing the distances, formation
angles, and orientations with respect a pair of agents,U is the
control input, andL is an upper triangular block matrix.

Remark 12. Without loss of generality, consider that the
agents are under the well-known directed open-chain forma-
tion, and let us assume that the agents are ordered as follows:
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𝑁 = {O,U,U,O, . . . ,O,U,U,O,O}, then, the state vector 𝜁,
the control input U, and the matrixL are given as follows:

𝜁 =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

𝜂21

ĥ32

h̃43
𝜂54

...
𝜂(𝑛−3)(𝑛−4)

ĥ(𝑛−2)(𝑛−3)

h̃(𝑛−1)(𝑛−2)
𝜂𝑛(𝑛−1)

𝜉𝑛

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

,

U =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

u1
û2
ũ3
u4
...

u𝑛−4
û𝑛−3
ũ𝑛−2
u𝑛−1
u𝑛

]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

,

(30)

L =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

𝑔𝜂21 𝑓𝜂21 03×2 03×3 03×3 ⋅ ⋅ ⋅ 03×3 03×2 03×2 03×3 03×3
02×3 𝑔ℎ32 𝑓ℎ32 02×3 02×3 ⋅ ⋅ ⋅ 02×3 02×2 02×2 02×3 02×3
02×3 02×2 𝑔ℎ43 𝑓ℎ43 02×3 ⋅ ⋅ ⋅ 02×3 02×2 02×2 02×3 02×3
03×3 03×2 03×2 𝑔𝜂54 𝑓𝜂54 ⋅ ⋅ ⋅ 03×3 03×2 03×2 03×3 03×3
... d

...
03×3 03×2 03×2 03×3 03×3 ⋅ ⋅ ⋅ 𝑔𝜂(𝑛−3)(𝑛−4) 𝑓𝜂(𝑛−3)(𝑛−4) 03×2 03×3 03×3
02×3 02×2 02×2 02×3 02×3 ⋅ ⋅ ⋅ 02×3 𝑔ℎ(𝑛−2)(𝑛−3) 𝑓ℎ(𝑛−2)(𝑛−3) 02×3 02×3
02×3 02×2 02×2 02×3 02×3 ⋅ ⋅ ⋅ 02×3 02×2 𝑔ℎ(𝑛−1)(𝑛−2) 𝑓ℎ(𝑛−1)(𝑛−2) 02×3
03×3 03×2 03×2 03×3 03×3 ⋅ ⋅ ⋅ 03×3 03×2 03×2 𝑔𝜂𝑛(𝑛−1) 𝑓𝜂𝑛(𝑛−1)
03×3 03×2 03×2 03×3 03×3 ⋅ ⋅ ⋅ 03×3 03×2 03×2 03×3 𝑅 (𝜃𝑛)

]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

, (31)
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with 0𝑎×𝑏 as an 𝑎 × 𝑏 zero matrix. Note that matrix L is still
an upper triangular block matrix.

The linearizing feedback control law is given by

U = L
−1P𝑑, (32)

where

P𝑑 =

[[[[[[[[[[[[[[[[[[[[[[[
[

p21
p̂32
p̃43
p54...

p(𝑛−3)(𝑛−4)
p̂(𝑛−2)(𝑛−3)
p̃(𝑛−1)(𝑛−2)
p𝑛(𝑛−1)
p𝑛

]]]]]]]]]]]]]]]]]]]]]]]
]

(33)

are the auxiliary controls defined previously.

Lemma 13. Matrix L is always invertible for all 𝛼𝑗𝑖 ̸= ±𝜋/2
and 𝑗 ̸= 𝑖.
Proof. Since matrix L is an upper triangular block matrix,
hence, the determinant is given by the product of the
determinants of the diagonal matrices. Specifically, for 𝑛 = 2,
the determinant of matrixL is defined as

det (L) = 1𝑑21 , (34)

while for 𝑛 ≥ 3, the determinant of matrixL is obtained as

det (L) = 𝑟 𝑛∏
𝑝,𝑞

cos𝛼𝑞(𝑞−1)𝑑𝑝(𝑝−1) , (35)

where 𝑝 = 2, 5, 6, 9, 10 . . . , 𝑛, 𝑞 = 3, 4, 7, 8, 11 . . . , 𝑛, and

𝑟 = {{{
−1, if 𝑛 = 3, 7, 11, . . .
1, otherwise. (36)

Proposition 14. Consider system (29) in closed-loop with the
control (32), then, the errors 𝑒𝑑𝑗𝑖 and 𝑒𝛼𝑗𝑖 will converge to zero,
i.e., lim𝑡󳨀→∞ 𝑒𝑑𝑗𝑖 = lim𝑡󳨀→∞ 𝑒𝛼𝑗𝑖 = 0.
Proof. Let us define the error coordinates as follows:

e = 𝜁 − 𝜁∗, (37)

where 𝜁∗ is the desired vector of distances and orientations
and is given as follows:

𝜁∗ =

[[[[[[[[[[[[[[[[[[[[[[[[
[

𝜂∗21

ĥ∗32
h̃∗43
𝜂∗54...
𝜂∗(𝑛−3)(𝑛−4)

ĥ∗(𝑛−2)(𝑛−3)
h̃∗(𝑛−1)(𝑛−2)
𝜂∗𝑛(𝑛−1)

𝜉∗𝑛

]]]]]]]]]]]]]]]]]]]]]]]]
]

, (38)

with 𝜂∗𝑗𝑖 = [𝑑∗𝑗𝑖 𝛼∗𝑗𝑖 0]⊤, ĥ∗𝑗𝑖 = [𝑑∗𝑗𝑖 𝛼∗𝑗𝑖]⊤, h̃∗𝑗𝑖 = [𝑑∗𝑗𝑖 𝛼∗𝑗𝑖]⊤,
𝜂∗𝑗𝑖 = [𝑑∗𝑗𝑖 𝛼∗𝑗𝑖 0]⊤, and 𝜉∗𝑛 = [𝑚𝑥 𝑚𝑦 𝜃𝑑]⊤, for 𝑗 ̸= 𝑖, where𝑚𝑥, 𝑚𝑦, and 𝜃𝑑 are the desired trajectory and orientation for
the leader.The dynamics of the error coordinates are given by

ė = 𝜁̇ − 𝜁̇∗, (39)

and substituting (29) with control (32) into (39), then one has

ė = −𝐾e, (40)

where

𝐾 = diag {𝐾21, 𝐾32, 𝐾43, 𝐾54, 𝐾65, . . . , 𝐾𝑛(𝑛−1), 𝐾𝑛} , (41)

with 𝐾21 = 𝐾54 = 𝐾65 = 𝐾𝑛(𝑛−1) = diag{𝑘𝑑, 𝑘𝛼, 𝑘𝜃},𝐾32 = 𝐾43 = diag{𝑘𝑑, 𝑘𝛼}, and 𝐾𝑛 = diag{𝑘𝑥𝑛 , 𝑘𝑦𝑛 , 𝑘𝜃𝑛}. It
becomes evident that if 𝑘𝑑, 𝑘𝛼, 𝑘𝜃, 𝑘𝑥𝑛 , 𝑘𝑦𝑛 , and 𝑘𝜃𝑛 > 0, hence,
matrix𝐾 is Hurwitz, and the errors will converge to zero, i.e.,
lim𝑡󳨀→∞ e = 0.
Remark 15. The following results are interesting due to the
fact that it is possible to show that the group of agents can
emulate the kinematic behaviour of rigid bodies. As far as we
know, this problem has not been addressed in the literature,
considering the distance and the formation angle between a
pair of robots.

4.6. Rigid Body Behaviour. It has been shown [39] that, when
system (13) with control (15) and (16), reaches the steady state,
then lim𝑡󳨀→∞ 𝑒𝑑𝑗𝑖 = lim𝑡󳨀→∞ 𝑒𝛼𝑗𝑖 = lim𝑡󳨀→∞ 𝑒𝜃𝑗𝑖 = 0 and the
leader-follower scheme, composed by two omnidirectional
mobile robots, will emulate the kinematic behaviour of a rigid
body.

Based on the aforementioned, the following theorem
states another contribution of this article.

Theorem 16. Consider that, in system (13), the agents 𝑅𝑗 and𝑅𝑖 can be either an omnidirectional or a differential-drive robot.
Suppose that system (13) has reached the steady state and 𝑑∗𝑗𝑖 =
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𝑑𝑗𝑖 ∈ R+ and 𝛼∗𝑗𝑖 = 0; therefore, the leader-follower scheme will
emulate the kinematic behaviour of a rigid body, the kinematic
behaviour of a standard 1-trailer or the kinematic behaviour of
the omnitrailer.

Theproof will be done constructively, taking into account
the cases given in Sections 4.2, 4.3, and 4.4.

Proof (U-O leader-follower scheme). Consider that system
(19) with control (21) has reached the steady state, i.e.,
lim𝑡󳨀→∞ 𝑒𝑑𝑗𝑖 = lim𝑡󳨀→∞ 𝑒𝛼𝑗𝑖 = lim𝑡󳨀→∞ 𝑒𝜃𝑗𝑖 = 0, then,
substituting the control law (21) into the kinematic model (1),
in steady state, one has

𝑥̇𝑖 = V𝑥𝑗 cos 𝜃𝑖 − 𝑑𝑗𝑖𝑤𝑗 sin (𝛼𝑗𝑖 − 𝜃𝑖) ,
̇𝑦𝑖 = V𝑥𝑗 sin 𝜃𝑖 − 𝑑𝑗𝑖𝑤𝑗 cos (𝛼𝑗𝑖 − 𝜃𝑖) ,
̇𝜃𝑖 = 𝑤𝑗.

(42)

Due to lim𝑡󳨀→∞ 𝑒𝜃𝑗𝑖 = 0, this means that lim𝑡󳨀→∞ 𝜃𝑖 = 𝜃𝑗,
lim𝑡󳨀→∞ 𝛼𝑗𝑖 = 𝛼∗𝑗𝑖 = 0, and the above expression is rewritten
as

𝑥̇𝑖 = V𝑥𝑗 cos 𝜃𝑗 + 𝑑𝑗𝑖𝑤𝑗 sin 𝜃𝑗,
̇𝑦𝑖 = V𝑥𝑗 sin 𝜃𝑗 − 𝑑𝑗𝑖𝑤𝑗 cos 𝜃𝑗,
̇𝜃𝑖 = 𝑤𝑗.

(43)

Note that, from (3), 𝑥̇𝑗 = V𝑥𝑗 cos 𝜃𝑗 and ̇𝑦𝑗 = V𝑥𝑗 sin 𝜃𝑗, then,
one obtains

𝑥̇𝑖 = 𝑥̇𝑗 + 𝑑𝑗𝑖𝑤𝑗 sin 𝜃𝑗, (44a)

̇𝑦𝑖 = ̇𝑦𝑗 − 𝑑𝑗𝑖𝑤𝑗 cos 𝜃𝑗, (44b)

̇𝜃𝑖 = 𝑤𝑗. (44c)

Comparing these last expressions with respect to the rigid
body motion equations (6a) and (6b), one can conclude that
the follower will move such that the whole systemwill behave
as a rigid body.

Proof (U-U leader-follower scheme). Consider that system
(23) with control (25a) and (25b) has reached the steady state,
i.e., lim𝑡󳨀→∞ 𝑒𝑑𝑗𝑖 = lim𝑡󳨀→∞ 𝑒𝛼𝑗𝑖 = 0; therefore, substituting
the control law (25a) and (25b) into the kinematic model (3)
and considering 𝑑∗𝑗𝑖 = 𝑑𝑗𝑖, in steady state, one has

𝑥̇𝑖 = V𝑥𝑗
cos𝛼∗𝑗𝑖 cos 𝜃𝑖 cos (𝛼

∗
𝑗𝑖 + 𝑒𝜃𝑗𝑖) ,

̇𝑦𝑖 = V𝑥𝑗
cos𝛼∗𝑗𝑖 sin 𝜃𝑖 cos (𝛼

∗
𝑗𝑖 + 𝑒𝜃𝑗𝑖) ,

̇𝜃𝑖 = V𝑥𝑗
𝑑𝑗𝑖 cos𝛼∗𝑗𝑖 sin 𝑒𝜃𝑗𝑖 .

(45)

Then, letting 𝛼∗𝑗𝑖 = 0 and 𝜃𝑖 = 𝜃𝑗 − 𝑒𝜃𝑗𝑖 , one obtains
𝑥̇𝑖 = V𝑥𝑗 cos (𝜃𝑗 − 𝑒𝜃𝑗𝑖) cos 𝑒𝜃𝑗𝑖 , (46a)

̇𝑦𝑖 = V𝑥𝑗 sin (𝜃𝑗 − 𝑒𝜃𝑗𝑖) cos 𝑒𝜃𝑗𝑖 , (46b)

̇𝜃𝑖 = V𝑥𝑗
𝑑𝑗𝑖 sin 𝑒𝜃𝑗𝑖 . (46c)

Note that the linear velocity of agent 𝑅𝑖 can be obtained from
(46a) and (46b) as follows:

V𝑥𝑖 = √𝑥̇2𝑖 + ̇𝑦2𝑖 = V𝑥𝑗 cos 𝑒𝜃𝑗𝑖 . (47)

From Lemma 2 and comparing (47) with (8) and (46c) with
(7d) one can note that they have the same structure. This
means that the agent𝑅𝑖 will behave as a trailer and agent𝑅𝑗 as
a tractor; hence, the whole system will behave as a standard1−trailer.
Proof (O-U leader-follower scheme). Consider that system
(23) with control (28) has reached the steady state, i.e.,
lim𝑡󳨀→∞ 𝑒𝑗𝑖 = lim𝑡󳨀→∞ 𝑒𝛼𝑗𝑖 = 0; therefore, substituting the
control law (28) into the kinematic model of the follower
(3) and considering that lim𝑡󳨀→∞ 𝑒𝑑𝑗𝑖 = lim𝑡󳨀→∞ 𝑒𝛼𝑗𝑖 = 0,
𝑑∗𝑗𝑖 = 𝑑𝑗𝑖, in steady state, one has

𝑥̇𝑖
= cos 𝜃𝑖
cos𝛼∗𝑗𝑖 [V𝑥𝑗 cos (𝛼

∗
𝑗𝑖 + 𝑒𝜃𝑗𝑖) − V𝑦𝑗 sin (𝛼∗𝑗𝑖 + 𝑒𝜃𝑗𝑖)] ,

̇𝑦𝑖
= sin 𝜃𝑖
cos𝛼∗𝑗𝑖 [V𝑥𝑗 cos (𝛼

∗
𝑗𝑖 + 𝑒𝜃𝑗𝑖) − V𝑦𝑗 sin (𝛼∗𝑗𝑖 + 𝑒𝜃𝑗𝑖)] ,

̇𝜃𝑖 = 1
𝑑𝑗𝑖 cos𝛼∗𝑗𝑖 [V𝑥𝑗 sin 𝑒𝜃𝑗𝑖 + V𝑦𝑗 cos 𝑒𝜃𝑗𝑖] .

(48)

Then, letting 𝛼∗𝑗𝑖 = 0 and 𝜃𝑖 = 𝜃𝑗 − 𝑒𝜃𝑗𝑖 , one obtains
𝑥̇𝑖 = cos (𝜃𝑗 − 𝑒𝜃𝑗𝑖) [V𝑥𝑗 cos 𝑒𝜃𝑗𝑖 − V𝑦𝑗 sin 𝑒𝜃𝑗𝑖] , (49a)

̇𝑦𝑖 = sin (𝜃𝑗 − 𝑒𝜃𝑗𝑖) [V𝑥𝑗 cos 𝑒𝜃𝑗𝑖 − V𝑦𝑗 sin 𝑒𝜃𝑗𝑖] , (49b)

̇𝜃𝑖 = 1
𝑑𝑗𝑖 [V𝑥𝑗 sin 𝑒𝜃𝑗𝑖 + V𝑦𝑗 cos 𝑒𝜃𝑗𝑖] . (49c)

Note that the linear velocity of agent 𝑅𝑖 can be obtained from
(49a) and (49b) as follows:

V𝑥𝑖 = √𝑥̇2𝑖 + ̇𝑦2𝑖 = V𝑥𝑗 cos 𝑒𝜃𝑗𝑖 − V𝑦𝑗 sin 𝑒𝜃𝑗𝑖 . (50)

From Lemma 3 and comparing (50) with (9a) and (49c)
with (9b), one can conclude that the leader-follower scheme
will achieve the same kinematic behaviour of the omnitrailer
given in Section 3.3.
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Figure 3: Comparison behaviour between a standard 1-trailer and
theU −U leader-follower scheme.

5. Numerical Simulations

It is worthmentioning that the previous control strategies are
defined between a pair of robots, where the follower robot is
controlled with respect to a unique leader. If these behaviours
are extended for the case of more than two robots, then it is
possible to consider a graph topology with a directed tree-
shaped configuration with a leader 𝑅𝑛 following a desired
trajectory. This topology can be constructed defining that, in
each pair of robots 𝑅𝑖 (follower) and 𝑅𝑗 (leader), it is satisfied
that 𝑗 > 𝑖, ∀𝑖 = 1, . . . , 𝑛 − 1, and 𝑗 = 1, . . . , 𝑛 with 𝑗 ̸= 𝑖.

For the first numerical simulation, Figure 3 displays a
comparison between the kinematic behaviour of a standard1−trailer, given by (7a), (7b), (7c), and (7d), and the U − U
leader-follower scheme, given by (23). The trailer receives
commands of linear and angular velocities such that is

following a Lemniscate of Gerono with parametrization 𝜉𝑑 :
R+ 󳨀→ R2 given by

𝜉𝑑 = [2 cos( 𝜋10𝑡) 1.5 sin(𝜋5 𝑡)]
⊤ . (51)

The initial conditions for the standard 1−trailer are[𝑥𝑗(0) 𝑦𝑗(0) 𝜃𝑗(0) 𝜃𝑖(0)]⊤ = [1 0 0 0]⊤ while for
the follower are 𝜉𝑖(0) = [0.5 0 0]⊤, with 𝛼∗𝑗𝑖 = 0 rad,𝑑∗𝑗𝑖 = 0.3 m and using the Matlab Simulink ode4 function
solver [43]. Specifically, Figure 3(a) shows the trajectory in
the plane for both, the standard 1−trailer, and the U − U
leader-follower scheme. It becomes evident that, in spite of
the follower has different initial conditions with respect to
the trailer, the follower has the same behaviour as the trailer;
while Figure 3(b) shows the orientation for the trailer and
the follower. Note that both orientation angles converge
to the same value, allowing us to validate that the U − U
leader-follower scheme will behave as a standard 1−trailer.

In order to show the performance of the control law (32)
and the different combinations of the leader-follower scheme,
Figure 4 depicts a numerical simulation with 𝑛 = 13. The
leader robot O13 is controlled to follow a Lemmiscate of
Gerono defined as

𝜉∗13 = [𝑚𝑥, 𝑚𝑦, arctan(𝑚̇𝑦𝑚̇𝑥)]
⊤ , (52)

with 𝑚𝑥 = 4 cos((𝜋/10)𝑡), 𝑚𝑦 = 3 sin((𝜋/5)𝑡), and 𝐾13 =
diag{1, 1, 3}. Since the agents are under the leader-follower
topology, then, the desired distance and the formation angle
are the same for all the pair of robots, i.e., 𝑑∗𝑗𝑖 = 0.2 m and𝛼∗𝑗𝑖 = 0 rad, while the control parameters are 𝐾21 = 𝐾54 =𝐾65 = 𝐾98 = 𝐾109 = 𝐾1312 = diag{2, 2, 3} and 𝐾32 = 𝐾43 =𝐾76 = 𝐾87 = 𝐾98 = 𝐾1110 = 𝐾1211 = diag{2, 2}. The initial
conditions for the robots are

𝜉1 (0) = [0.89 0.085 0]⊤ ,
𝜉2 (0) = [1.14 −0.0905 0]⊤ ,
𝜉3 (0) = [1.33 −0.288 0]⊤ ,
𝜉4 (0) = [1.52 −0.104 0]⊤ ,
𝜉5 (0) = [1.74 −0.186 0]⊤ ,
𝜉6 (0) = [1.89 −0.117 0]⊤ ,
𝜉7 (0) = [2.02 −0.153 0]⊤ ,
𝜉8 (0) = [2.139 −0.112 0]⊤ ,
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Figure 4: Simulation with 𝑛 = 13 combining the four different leader-follower schemes.

𝜉9 (0) = [2.35 −0.024 0]⊤ ,
𝜉10 (0) = [2.352 0.154 0]⊤ ,
𝜉11 (0) = [2.59 −0.098 0]⊤ ,
𝜉12 (0) = [2.9 0 0]⊤ ,
𝜉13 (0) = [3 0 0]⊤ .

(53)
Particularly, Figure 4(a) illustrates the trajectory in the plane
of all the robots. In this sense, the pairs of robots (O5,O4),(O9,O8), and (O13,O12) are under the O − O scheme while
the pairs of robots (U2,O1), (U6,O5), and (U10,O9) are
under the U − O scheme. In both cases, the agents achieve
the rigid body behaviour. For the U −U scheme, integrated
by the pairs (U3,U2), (U7,U6), and (U11,U10), it achieves
the behaviour of the standard 1−trailer. The omnitrailer
behaviour appears in the pairs (O4,U3), (O8,U7), and(O12,U11) with the O − U scheme. Note that, in all the
cases, the pairs of robots satisfy 𝑗 > 𝑖. On the other hand,
Figure 4(b) depicts the distance among the robots, where it
becomes evident that each pair of agents converges to the
desired distance 𝑑∗𝑗𝑖 = 0.2m. Finally, Figure 4(c) displays the
formation angles of each pair of agents, which converge to
the desired formation angle 𝛼∗𝑗𝑖 = 0 rad.

6. Experimental Work

The approach is tested using the four mobile robots with four
mecanum wheels like the ones shown in Figure 5(a). The
robots are actuated by servomotors Dynamixel� AX − 12W
and controlled by a microcontroller NXP� model 𝐿𝑃𝐶1768
with Bluetooth communication to a PC computer using the
module𝐻𝐶−05. In a first step, the position and orientation of
the robots are measured by a Vicon� motion capture system
composed by 6 cameras model Bonita� (Figure 5(b)). The
motion capture measures within an available workspace area
of 3m by 0.7m.Note in Figure 5(a) that the reflectivemarkers
were placed on the top of the robots in order to be identified
by the Vicon� system. The control algorithm runs at 117 ms
rate with a resolution of ±0.5mm.

According to Figure 6, the velocities of each wheel can be
calculated by

[[[[[
[

𝜔𝑖1𝜔𝑖2𝜔𝑖3𝜔𝑖4

]]]]]
]
= 1𝑟

[[[[[
[

1 −1 − (𝐿 + 𝑙)
1 1 (𝐿 + 𝑙)
1 1 (𝐿 + 𝑙)
1 −1 − (𝐿 + 𝑙)

]]]]]
]
[[
[
V𝑥𝑖
V𝑦𝑖𝜔𝑖

]]
]
, (54)

where 𝐿 = 0.1 m, 𝑙 = 0.05 m, and 𝑟 = 0.0275 m. Note that
(54) can be adequate according to the number of wheels of
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(a) Omnidirectional wheeled mobile robots

(b) Experimental setup

Figure 5: Experimental setup composed by omnidirectional and
differential-drive mobile robots and six Vicon cameras.
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Figure 6: Omnidirectional wheeled mobile robot.

the robot, for example, for the three omnidirectional wheeled
mobile robot.

Figures 7, 8, and 9 show an experiment of the combined
four control laws presented in the Section 4. The leader
robot is O4 (omnidirectional robot in black color). The pair(O4,O3) implements the control O − O scheme, achieving a
rigid body behaviour. The pair (O4,U2) enables the control
law O − U scheme, obtaining an omnitrailer behaviour.
Finally, the pair (U2,O1) implements the control law U −
O scheme performing another rigid body behaviour. The
desired distance and heading angles are given by 𝑑∗43 = 𝑑∗42 =𝑑∗21 = 0.3 m and 𝛼∗43 = −𝜋/2 rad, 𝛼∗42 = 0 rad, and 𝛼∗21 =𝜋/2. The control parameters are 𝐾𝑗𝑖 = diag{6, 6, 2} for the
pairs (O4,O3) and (U2,O1) and 𝐾42 = diag{5, 1} for the pair(O4,U2). The initial conditions of the robots are given by
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Figure 7: Trajectories in the plane with 𝑛 = 4 agents. The agentU2
is an omnidirectional robot with lateral velocity V𝑦2 = 0 allowing
him to act as a differential-drive robot.

𝜉1 (0) = [0.6163 −0.10531 −12.41]⊤
𝜉2 (0) = [0.9072 −0.17935 −12.38]⊤ ,
𝜉3 (0) = [1.2902 −0.16269 −1.274]⊤ ,
𝜉4 (0) = [0.9943 −0.11272 −12.71]⊤ ,

(55)

in meters and radians, respectively. The leader robot is
controlled to follow a circled-shape trajectory with radius
equal to 1 m centered on the origin and oriented to the
velocity vector of the trajectory; i.e., the desired values for the
leader are given by

𝜉∗4 = [𝑚𝑥, 𝑚𝑦, arctan(𝑚̇𝑦𝑚̇𝑥) − 𝜋2 ]
⊤ , (56)

where 𝑚𝑥 = sin((2𝜋/25)𝑡) and 𝑚𝑦 = cos((2𝜋/25)𝑡). Thus,
the control law for the leader robot is established as u4 =𝑅−1(𝜃4)[𝜉̇∗4 − 𝑘4(𝜉4 − 𝜉∗4 )], with 𝑘4 = diag{6, 6, 2.5}.

The trajectories of the robots are shown in Figure 7. The
colors of the links between robots in Figure 7 identify the
type of control law that it is being used, i.e., gray color for
O − O scheme, magenta color for O − U scheme, and cyan
color for U − O scheme. Note that, in all cases, it is satisfied
that 𝑗 > 𝑖. Furthermore, in this experiment, the agent U2
is an omnidirectional mobile robot with V𝑦2 = 0 obtaining
the behaviour of a differential-drive robot. It is important to
point out that, from a global point of view, a leader-follower
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Figure 9: Control inputs for the mobile robots.

setup with subsets or platoons of robots is achieved. This
kind of system can be applied in collaborative transportation
tasks where the platoons of robots load together a big work-
piece and all the platoons are formed in a convoy-like
configuration.

From Figure 8, it becomes clear that each follower
converges to the desired distance and the desired formation
angle. Finally, Figure 9 depicts the control inputs for each
robot. Noise effects in the trajectories appear due to the
nonmodelled friction of the wheels on the floor, sensor
measurements, and actuator errors, among others.
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Figure 10: Trajectories in the plane with 𝑛 = 5 agents. The agent
U4 is an omnidirectional robot with lateral velocity V𝑦4 = 0 allowing
him to act as a differential-drive robotwhileU3 is a differential-drive
robot.

A second experiment with 𝑛 = 5 agents is displayed in
Figures 10, 11, and 12. In this case, the group of agents is
composed by a differential-drivemobile robot and four omni-
directional robots, where one of them acts as a differential-
drive robot. The initial conditions of the robots are given by

𝜉1 (0) = [1.62 −0.11 2.68]⊤ ,
𝜉2 (0) = [1.69 −1.14 2.21]⊤ ,
𝜉3 (0) = [1.02 −1.6 1.16]⊤ ,
𝜉4 (0) = [0.33 −0.99 −0.2]⊤ ,
𝜉5 (0) = [0.34 −0.2 0.93]⊤ ,

(57)

in meters and radians, respectively. The leader robot is
controlled to follow the same circled-shape trajectory of
the previous experiment. The trajectories in the plane are
depicted in Figure 10.The leader robot isO5 (omnidirectional
robot in magenta color). The pair (O5,U4) implements the
control O − U scheme, achieving the omnitrailer behaviour,
illustrated by an orange line. The pair (O5,O1) enables the
control law O−O scheme while the pair (U4,O2) enables the
control law U − O scheme, obtaining, in both cases, a rigid
body behaviour, depicted by a gray and cyan line, respectively.
Finally, the pair (U4,U3) implements the control law U −
U scheme performing the standard 1− trailer behaviour,
represented by the yellow line.
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Figure 12: Control inputs for the mobile robots.

The desired distance and heading angles are given by𝑑∗51 = 𝑑∗42 = 0.4 m, 𝑑∗54 = 𝑑∗43 = 0.6 m, 𝛼∗51 = 𝛼∗42 = 𝜋/2
rad, and 𝛼∗54 = 𝛼∗43 = 0 rad. The control parameters are the
same as in the previous experiment i.e.,𝐾𝑗𝑖 = diag{6, 6, 2} for
the pairs (O5,O1) and (U4,O2) and 𝐾54 = 𝐾43 = diag{5, 1}
for the pairs (O5,U4) and (O4,U3).

The distance error, the formation angle error, and the
orientation error are displayed in Figure 11. Note that each
follower converges to the desired distance and the desired
formation angle. On the other hand, the control inputs for
each mobile robot are shown in Figure 12.
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Figure 13: Nonholonomic restriction for the agent U4 which is an
omnidirectional robot acting as a differential-drive robot.

Finally, in order to show that agent U4 behaves as a
differential-drive robot, Figure 13 illustrates the nonholo-
nomic restriction of this agent. This signal was obtained
by applying a numerical method to calculate the derivative
of 𝑥4 and 𝑦4. Note that, in steady state, the nonholonomic
restriction converges to a bandwithmagnitude given in terms
of themeasurement error.Thismeans that the nonholonomic
restriction is satisfied by the agentU4.

7. Conclusions

This work extends the leader-follower behaviours of a com-
bined set of several kinematic models of omnidirectional and
differential-drive robots.This kind of robots becomes actually
in the most common wheeled vehicles used in the industry
and service tasks. By the combination of these models, four
basic leader-follower control laws are designed using the
measurements of distance and the heading angle with respect
to a leader, avoiding the use of a global reference framework.
It is proved that these control laws generate, in the settling
time, some mechanical structures related to rigid body, the
standard 1-trailer, and a new structure called omnitrailer.
Extending this local behaviour to the case of multiple groups
of agents, a directed tree-shaped topology can be constructed,
where the leader robot is the unique root node.

It is shown by numerical simulations and real-time
experiments that the combination of the leader-follower
setups can generate formation tracking, useful for object
transportation or other collaborative tasks, like 𝑛-trailer and
convoy behaviours of rigid platoons of robots. This complex
behaviour becomes a more decentralized approach than the
global referenced strategies like virtual structures or cluster
space specifications. As futurework, the formation topologies
will be extended for other directed and undirected graphs
and the local sensors will be implemented in the robots to
measure the distances and the heading angles.
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Supplemental material has included a short video of the
second experimentwith 5 agents. In this case, the leader robot
is an O5 (omnidirectional robot). The pair (O5,U4) imple-
ments the control O − U scheme, achieving the omnitrailer
behaviour. The pair (O5,O1) enables the control law O − O
scheme while the pair (U4,O2) enables the control lawU−O
scheme, obtaining, in both cases, a rigid body behaviour.
Finally, the pair (U4,U3) implements the control law U −
U scheme performing the standard 1− trailer behaviour.
(Supplementary Materials)
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