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ABSTRACT

As a proof-of-concept, we show that the clean, potent
bleaching and disinfecting agent ClO, can be produced si-
multaneously at both electrodes of an electrochemical cell
by the anodic oxidation of CIO, ions and the cathodic re-
duction of ClO; ions in a convergent paired electrosynthe-
sis. This novel approach may lead to important savings in
the economy and energy of its production and byproduct
reduction.
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INTRODUCTION

In the vast majority of electrochemical processes, the
desired reaction occurs at one of the electrodes, yet the
complementary reaction is not productive. The products of
the latter should not interfere with the starting materials,
intermediates or products [1]. In fact, the current at the
counter electrode is most frequently used to decompose
the solvent. In some cases, this last reaction serves the pur-
pose of producing a desired pH in the solution by decom-
position of water (production of H* or OH and the con-
comitant formation of O, or H,, respectively), although this
may translate into energy waste. Several organic and in-
organic synthetic processes have been designed to avoid
such a waste [2-4]. Besides savings in the economy and
energy, benefits of designing and using simultaneous proc-
esses also include a reduced use of fossil fuels for produc-
ing electricity combined with decrease in pollution. The
production of useful substances also avoids the need for
waste disposal.

Selected examples of simultaneous processes for envi-
ronmentally oriented applications are summarized below:

a) Simultaneous removal of copper and chemical oxy-
gen demand [5], as well as reduction of Cu, Ag or Cd ions
and oxidation of CN' ions [6]

b) Simultaneous production of high-purity H, gas and
solid S from H,S either through a direct or an indirect proc-
ess [7-17]

c¢) Removal of SO, by anodic oxidation and the simul-
taneous water reduction producing H,SO, and H,, respec-
tively [18, 19]

d) Simultaneous production of O; and H,O, in a flow
reactor equipped with a proton exchange membrane. This
avoids the need for two separate cells to produce these
chemicals, whereby O; and waste H, would be produced
in the first one, and H,O, and waste O, in the second [20].

e) The production of Fe** at the anode and reduction of
O, at the cathode of a cell to produce H,O,. A mixture of
Fe* and H,0, is known as Fenton’s reagent which yields
OH radicals (known to be very powerful oxidizers) and
OH’ ions. These ions produce iron hydroxides that form a
three-dimensional gel capable of adsorbing a plethora of
pollutants, thus producing a decontamination effect [21].

f) An interesting variation of the above process in-
volves the use of boron-doped diamond electrodes whereby
hydroxyl radicals can be generated simultaneously by an-
odic and cathodic processes in order to destroy persistent
organics [22, 23].

With this background in mind, we tested the possibil-
ity of electrochemically producing a disinfecting agent in a
simultaneous fashion. Useful chemical disinfectants have
one or more of the following characteristics [24]:
¢ Deactivate microorganisms strongly, and are also rela-
tively toxic to humans and animals
e Undergo active interaction (normally oxidation or addi-
tion) with organic matter and inorganic reducing agents
* Dissolve adequately in aqueous media (except the diha-
logens due to their non-polar nature)
e Can penetrate surfaces and cell membranes

e Deodorize well or moderately well

Since chlorine dioxide (C10,) has most of these char-
acteristics, we tested it for the purpose of the present study.
It can act as an extremely effective biocide, disinfectant and
oxidizer under appropriate conditions, and its oxidizing and
disinfecting properties remain essentially constant over a
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wide pH range [25]. The paper and pulp industry utilize it
as a bleaching agent and alternative to chlorine for water
treatment because it does not undergo hydrolysis in water,
but is active, even against some chlorine-resistant pathogens,
and does not react with ammonia. In addition, C1O, disin-
fection by-products (DBPs) are substantially fewer than
those produced by chlorine. In fact, contrary to Cl,, the C1O,
does not react with humic substances to generate toxic spe-
cies, such as carcinogenic trihalomethane compounds dur-
ing water disinfection processes. ClO, is unable to react
with unsaturated bonds in natural organic matter (NOM)
on account of its different reaction mechanism (i.e., ClO,
directly oxidizes organic matter by electrophilic abstraction
rather than by the substitution and oxidation pathway of
chlorine) [24]. It is also used for taste and odor reduction,
algal growth control, as well as for iron and manganese
removal by oxidizing them to produce insoluble compounds
that can be eliminated easily from an aqueous medium. ClO,
has been used to disinfect public buildings in the US after
terrorist attacks involving liberation of anthrax spores.

Many of the chemical reactions utilized in producing
ClO, have been discussed and illustrated in our publications
elsewhere [24-27]. The main strategies involving electro-
chemical steps can be grouped as shown below.

1. Anodic processes:

1.1 Electrolysis of a CI solution to produce:

1.1.1 Cl10, [28]

1.1.2 ClO,+ Cl,[29, 30]

1.1.3 ClO5, followed by chemical comproportionation
with CI to produce ClO, [31-35]

1.1.4 Cl,, followed by chemical comproportionation with
ClOj; to produce ClO, [36-38]

1.1.5 Cl,, followed by chemical disproportionation with
CIO to produce ClO, [39]

1.1.6 Cl, that oxidizes ClO; to produce ClO, [40]

1.2 Electrolysis of a ClOy solution to produce CIlO; using
a cation exchange membrane (CEM) [41]

1.3 Electrolysis of H,0 to produce:

1.3.1 H" ions that are fed through a CEM (cation exchange
membrane) into an ion exchange compartment to acidify a
ClO; solution to produce ClO, [42]

1.3.2 H" ions that are fed through a solid electrolyte to
acidify a ClO;’ solution to produce ClO, [43]

1.3.3 H" ions that are fed through a CEM into a com-
partment containing CI'. This acidified solution is sent to
a non-electrochemical step to comproportionate with
ClO5’ and produce CIO, [44].

2. Cathodic processes:

2.1 Electrolysis of a ClOj solution to produce ClO, [45,
46]. The H' produced at the anode can be fed through a
CEM into the catholyte to acidify the ClO5 solution in order
to facilitate its reduction to ClO,. The Cl, byproduct is sepa-
rated and re-fed into the cathode to provide more CI” for
the reaction [47].

2.2. Electrolysis of H,O to produce H, that reacts with Cl,
to yield HCI. Then, this HC] comproportionates with ClO;°
to produce ClO, [48, 49].

For our present purpose, we built on the above con-
cepts - namely that ClO; can be obtained separately from
the cathodic reduction of CI(V) and the anodic oxidation
of CI(III). Thus, the aim of the present study was to show
a proof-of-concept that ClO, can be produced simultane-
ously at both electrodes. This novel, unusual type of proc-
ess is also termed convergent paired electrosynthesis [1].
To the best of our knowledge, this approach has not been
attempted before.

Experimental procedure

The strategy for the simultaneous electrochemical pro-
duction of ClO, firstly focused on finding the appropriate
experimental conditions to oxidize CIO, ions, to reduce
ClOs ions individually, and then to combine both processes.
The individual production reactions were performed in a cell
composed of two 10-ml vial compartments separated by a
cation exchange membrane, CEM (see Fig. 1). The simul-
taneous production was carried out in a cell composed of two
10-ml glass beakers connected through an ion exchange
bridge (as discussed below). The potential for each individ-
ual process was selected on the basis of earlier reports and
standard potential tables [50, 51], and undesirable reactions
(e.g., the reduction of ClOj5" to CI') can thus be minimized
[52]. Regulated potentials and currents were applied with
an AMEL potentiostat/galvanostat (model 2049). All the
potentials in the present study were referred to Ag/AgCl,
and all experiments were run in duplicate or triplicate.

Anolyte Catholyte

o (/

—J | m—

FIGURE 1 - Experimental set-up (reference electrode (not shown)
can be placed at either side depending on the specific requirements).

Reagents and Materials

NaCl (J.T. Baker, analytical reagent), NaClO, (Aldrich,
80% pure), NaClO; (Sigma, analytical reagent), concen-
trated H,SO, (J.T. Baker, 96% pure), cation exchange resin,
CER (Rohm and Haas, Amberlite Irrono), cation exchange
membrane, CEM (Nafion 417, Aldrich), anion exchange
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membrane (The Electrosynthesis Co.), graphite rods (Stead-
tler Mars HB, 2 mm in diameter, used as working and
counter electrodes), Ag/AgCl reference electrode (BAS,
Bioanalytical Systems), phosphate buffer pH 7 (Aldrich).

Specific conditions are indicated below:

a) Individual process for the anodic production of ClO,

Anolyte: 5 ml of 0.1 M NaClO,

Catholyte: 5 ml of a saturated NaCl solution

The reaction was performed under a potential of 0.7—
0.9 V vs. Ag/AgCl, measured at the working electrode. Re-
action times varied from 10 to 65 min. The solution was
stirred at 5-min intervals.

b) Individuai process for the cathodic production of CIO,

Anolyte: 5 ml of a saturated NaCl solution

Catholyte: 1.5 ml of 3 M NaClO; 0.1 ml of 0.1 M
NaCl, 2 ml of concentrated H,SO,, and 3 ml of a 0.001-
0.003 M ClO; solution, prepared chemically in advance by
acidification of a Cl0O, solution [25]

The reaction was performed under a potential of 0.5 V
vs. Ag/AgCl, measured at the working electrode. Reaction
times varied from 20 to 120 min.

c) Simultaneous electrochemical production of ClO,

Anolyte: 6 ml of 3 M NaClO,, 2 ml of a saturated
phosphate buffer (pH = 7).

Catholyte: 1.5 mL of 3 M NaClO;, 0.1 ml of 0.1 M
NaCl, 4.4 ml of a 0.001-0.003 M ClO, solution, prepared
chemically in advance by acidification of a ClO;" solution
(see above), 2 ml of concentrated H,SO,.

The reaction was performed under a potential of 0.5 V
vs. Ag/AgCl, measured at the cathode. Reaction times
varied between 60-120 min. Two 10-ml glass beakers were
used (instead of the 10-ml vials employed in the individual
ClO, preparations). They were connected through a 7 cm
tall, 0.4 mm ID glass U-tube packed with Amberlite CER,
and they had both ends covered with anion exchange mem-
branes (held in place by small rubber bands). This U-tube/
ion exchange system was designed to prevent migration
of H* from the inherently acidic catholyte towards the an-
ode. Such H* ions are known to facilitate the generation of
HCIO,, which can then decompose to produce ClO,. This
situation would produce erroneous (i.e., high) yields com-
pared to those obtained from a purely electrochemical pro-
duction, and was thus avoided. Furthermore, to prevent the
pH in the anolyte from being drastically affected by this or
other unexpected phenomena, we added a small amount of
phosphate buffer as described above.

Analytical technique

The quantification of aqueous ClO, may be a compli-
cated task since other possible chlorinated species present
(e.g., Cl,, ClO", CIOy, and CIOj3) can mask some of its
analytically useful properties (e.g., redox potential, oxidiz-
ing ability, and optical absorbance) [53]. Therefore, we
selected the standard method of amperometric titration [54].
Here, a fixed potential is applied between two electrodes

and the response current is monitored as a function of the
concentration of specific redox species. Successive titrations
permit the selective analysis of each chlorinated species. In
spite of its time-consuming characteristics, the high selec-
tiveness of the method warrants its use for the present
application. Due to the possible co-production of chlorine
gas, the analytes of interest for our present purposes were
Cl, and ClO, (see below).

RESULTS AND DISCUSSION

Using the parameters for the individual productions
as described above, we obtained the following ClO, chemi-
cal yields after 1 h of reaction. These are calculated on the
basis of the amount of ClO, achieved as compared to the
initial amount of reagent at the anode or cathode (i.e.,
ClO, or ClOs, respectively; a) anodic: 12% (at 0.73 V), 9%
(at 0.90 V), and b) cathodic: 0.3%). Once we succeeded in
producing ClO, with each individual process, we proceeded
to test the simultaneous process. The ClO, yields thus ob-
tained are given in Table 1. Also listed are the results of a
blank test performed in the absence of an applied poten-
tial so as to evaluate a possible parasitic parallel chemical
pathway for the production of ClO, that could alter the
electrochemical results. These results clearly indicate that
ClO, was electrochemically obtained at both sides of the
electrochemical cell.

TABLE 1 - Experimental results of the simultaneous process (chemi-
cal yield is calculated as moles of product/moles of reagent x 100).

Medium g/L mmol Chemical
(average) (average) ield (%)

Anolyte

Cl,

60 min 0.04 0.0045 0.03
100 min 11 1.3 7.1
120 min 0.2 0.02 0.1
ClO,

60 min 5 0.6 33
100 min 9 1.0 5.8
120 min 11 1.3 7.0
Catholyte
Cly

60 min 0.2 0.02 0.45
100 min 0.09 0.008 0.2
120 min 0.02 0.002 0.05
ClO,

60 min 0.3 0.03 0.6
100 min 0.45 0.04 0.95
120 min 0.5 0.05 i.1
Blank test
Cl

60 min 0.3 0.04 0.8
100 min 0.06 0.007 0.15
120 min 0.06 0.006 0.1
ClO,

60 min 0.04 0.004 0.1
100 min 0.08 0.01 0.2
120 min 0.03 0.003 0.07
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The yield of the blank test, albeit measurable, was not
of significance so as to mask the electrochemical yields.
Hydrogen ions are inherently produced at the anode and -
as discussed earlier - are known to produce chlorous acid
(HCIO,) that can disproportionate to yield ClO,. Further
efforts would be required in order to separate this contri-
bution from the pure electron-transfer phenomenon.

We have initiated experiments to take advantage of
LeChateliers principle by removing the ClO; product from
the final solution with the aid of an inert gas stream. Pre-
liminary results using this approach in a commercial filter
press-type cell are promising.

CONCLUSIONS

We have demonstrated for the first time that Cl10, can
be produced simultaneously at the anode and cathode of an
electrochemical cell by the respective oxidation or reduc-
tion of CIO; and ClO5 ions in a simultaneous, convergent
paired electrosynthesis. Even though small yields were ob-
tained under our experimental conditions (ca. 8%), higher
yields can undoubtedly be achieved by parameter optimi-
zation (e.g., temperature, time, volume per unit area, elec-
trode materials and separation, and flow/mass transfer con-
ditions).
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