Reagents and Reaction Time Reduction in the Determination of Chemical Oxygen Demand (COD).

Patricia Carbajal-Palacios,¹ Patricia Balderas-Hernández,^{1,*} Gabriela Roa-Morales,¹ Jorge G. Ibanez.²

Centro Conjunto de Investigación en Química Sustentable Uaemex-UNAM, Carretera Toluca-Atlacomulco Km 14.5, 50200 Toluca, México. 2. Mexican Center for Green and Microscale Chemistry, Dept. of Eng. and Chemical Sciences, Universidad Iberoamericana. Prol. Reforma 880, 01219 México, D.F. México.

*Corresponding author email: patbh2003@yahoo.com.mx;

Tel: +52(55)5950 4168, +52(55)5950 4074.

SUMMARY

The assessment of water quality typically involves the determination of its chemical oxygen demand (COD). This method is performed in an acidic medium, using potassium dichromate as oxidizing agent, mercury(II) sulfate as halide inhibitor, and silver sulfate as catalyst. Samples are digested for two hours, and the resulting absorbances are read in a spectrophotometer. Unfortunately the required reagents used are harmful and the reaction times are rather long. We have reported earlier the successful use of H_2O_2 as an alternative, environmentally friendlier oxidizing agent. In the present work a protocol has been devised and tested to halve the amount of silver sulfate required, and with a judicious use of UV light this greatly reduces the reaction time thus yielding a faster and more environmentally sound technique.

Keywords: COD, Hydrogen Peroxide, UV light, Silver Sulfate.

INTRODUCTION

Despite the undeniable economic importance of key industries, the concomitant effluent production often increases the amount of toxic substances released into water bodies that affects aquatic ecosystems [Ledakowics et al. 2001; Kusic et al. 2006]. Some industrial effluents are rich in dissolved organic matter, a fraction of which is difficult to degrade and remains after biological treatment [Quintero and Cardona 2010].

Among the different techniques that measure water quality, the chemical oxygen demand (COD) is prominent as a measure of the amount of oxygen required to oxidize the organic matter present [Domini et al 2009; Zhang et al. 2009]. The standardized method involves the use of $K_2Cr_2O_7$ ($E^0 =$ 1.36 V) in the presence of a catalyst (Ag_2SO_4) for the oxidation of organic compounds under acidic conditions (H_2SO_4). Certain inorganic substances present in the environment interfere since they are also susceptible to oxidation, thus elevating the COD results. To prevent this, $HgSO_4$ is added as halide and pseudohalide inhibitor (e.g., chloride, iodide, sulfur, sulfites, etc.) [Ai et al. 2004; Chen et al. 2005; Zhu et al. 2006]. The procedure involves the addition of a known amount of oxidizer to the sample; the resulting mixture is then subjected to heat treatment in a digester for two hours at 150 °C [Sousa et al. 2007; Su et al. 2007; Yao et al. 2009; Berenguer, 2015].

Alternative methods have been developed, although many pose their own challenges (including higher costs) [Raposo et al. 2008; Domini et al. 2009; Vyrides & Stuckey, 2009; Zhang et al. 2009]. A greener alternative has been developed based on the use of hydrogen peroxide ($E_0 = 1.78$ V) to achieve the desired oxidation without the need for toxic chromates [Gogate et al. 2003; Quintero et al. 2010; Carbajal-Palacios et al. 2012].

The combination of oxidizing agents and UV irradiation is particularly interesting [Alnaizy and Akgerman, 2000; Benítez et al. 2011, Litter et al. 2012] since for example the UV/H₂O₂ combined method generates 'OH radicals, capable of transforming various toxic organic compounds into less dangerous, biodegradable products [Gogate et al. 2004] or even into CO₂. In fact, Advanced Oxidation Processes (AOPs) rely on this radical generation for the treatment of effluents. Examples of AOPs include the use of ozone (O₃), hydrogen peroxide (H₂O₂), and ultraviolet radiation (UV) [Chidambara et al. 2005; Kusic et al. 2006; Farmer and Cardona, 2009; Benitez et al. 2011].

Hydrogen peroxide has been used for several years for the treatment of industrial effluents and potable water, mainly with the aim of removing organic matter [USP technologies 2015]. H_2O_2 is a versatile oxidant, with an oxidation potential greater than that of chlorine, chlorine dioxide or potassium permanganate and is capable of producing hydroxyl radicals via catalysis either in the

presence or absence of radiation [Luis de Mattos et al. 2003]. By simply adjusting factors such as pH, temperature, dose, reaction time and the nature and amount of catalysts, H_2O_2 can oxidize different complex organic compounds into simpler, less toxic and more biodegradable species [Nilsun, 1999; Alnaizy and Akgerman, 2000]. The generation of highly oxidizing and reactive species in the reaction medium like the superoxide anion radical (O_2^{\bullet}), the hydroperoxide anion (HOO⁻) and the highly reactive and non-selective hydroxyl radical ([•]OH) increases such degradation rates. These species firstly attack unsaturated centers (e.g., chromophores) and then the rest of the organic moieties [Gogate 2004].

The purpose of the present work was to verify the viability of using hydrogen peroxide as oxidizing agent for the COD determination in order to reduce reaction times with the help of UV light and to decrease the required amounts of the harmful Ag_2SO_4 catalyst.

EXPERIMENTAL

The preparation of solutions and the experimental procedures for the proposed COD determination are described next.

1. Preparation of solutions.

1.1 Method #1 (Standardized technique). The solutions for the standard COD determination were prepared in accordance with internationals standards [APHA, 1998] using $K_2Cr_2O_7$ (Reasol, 99.0%), H_2SO_4 (Fermont, 96.1%), $HgSO_4$ (Fermont, 98.4%), and Ag_2SO_4 (Fermont, 98.4%).

1.2 Method #2 (H_2O_2 as the oxidizing agent). Solutions were prepared as in 1.1, except that $K_2Cr_2O_7$ was replaced by H_2O_2 . The stoichiometric amount of H_2O_2 required for the oxidation of the sample with the largest COD in the range of interest of this work was used throughout this procedure. The oxidizing solution was prepared by adding 5.2 mL H_2O_2 (J. T. Baker, 30%) to 500.0 mL of the water sample, followed by 167.0 mL of H_2SO_4 and 33.3032 g of $HgSO_4$. This mixture was then diluted to 1000 mL with distilled water [Carbajal-Palacios et al. 2012]. The acidic catalyst solution was prepared as in 1.1.

1.3 Method #3 (Decreased amount of Ag_2SO_4). The catalytic solution for the experiments aimed at achieving a silver sulfate decrease was prepared dissolving 7.5015 g of Ag_2SO_4 in 1 L of H_2SO_4 . Complete dissolution was achieved after two days and the resulting solution was stored in an opaque container to prevent its photodecomposition. The oxidizing solution was prepared as in 1.2.

1.4 Method #4 (With UV irradiation). The oxidant solution was prepared as in 1.2 and the catalyst solution was prepared as in 1.3. UV light (Mineral light camp, model UVGL-58, multiband UV-254/366 nm, 18 W) was then irradiated onto the sample to decompose H_2O_2 and reduce reaction time. Several exposure time were tested in triplicate: 30, 40, 50 and 60 min.

2. COD Determination

2.1 Decrease of the Ag₂SO₄ concentration (Method #3).

Two different concentrations of Ag_2SO_4 were tested: 0.0481 M (standard concentration) and 0.0241 M.

2.2 Decrease of reaction time with UV light (Method #4).

Samples were exposed to UV light during 30, 40, 50 or 60 min.

2.3 Tube preparation and absorbance readings

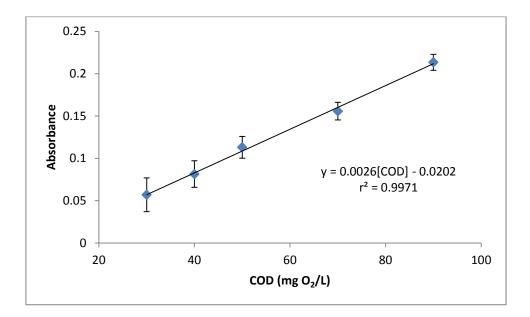
i) 1000 mg_{COD}/L-stock solutions were prepared for each of the four methods described above by drying potassium hydrogen phthalate (KHP, 100%, J.T. Baker) at 110 °C during 2 h and dissolving 0.8514 g in distilled water to a final volume of 1000.0 mL. Standard dilutions were then prepared from such stock solutions as follows: 30, 40, 50, 70, 90, 100, 200, 300, 400, 500, and 600 mg of COD / L.

ii) The final digestion solution was prepared for each method by mixing 1.5 mL of the corresponding oxidizer, 3.5 mL of the catalyst solution and 2.5 mL of water or sample.

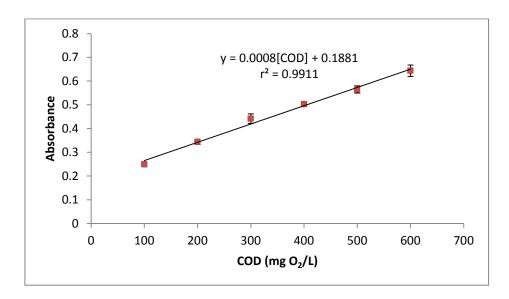
iii) For the standard COD determination a calibration curve was obtained as described in the international standard [APHA, 1998] using a UV-Vis spectrophotometer (Perkin Elmer, Lambda 25) as follows:

- Method #1: The solutions were digested for 2 h and their absorbances read at 620 nm.
- Methods #2 and #3: The solutions were digested for 2 h at ambient temperature.
- Method #4: The solutions were digested for 1 h at ambient temperature under UV radiation and their absorbances read at 420 nm.

iv) A calibration curve was developed for each COD range (low/high, see below) by analyzing selected dilutions of the KHP standard solution using a 1-cm optical path quartz cell in the UV-Vis spectrophotometer.


v) These four COD determination methods were applied to real industrial wastewater samples and the results are compared below.

RESULTS AND DISCUSSION


Decrease of the Ag₂SO₄ concentration


Quintuplicate tests were performed with the two different Ag_2SO_4 concentrations. Halving the original concentration to 0.024 M yielded a very good linear correlation, as shown in Figures 1a (low COD range, 30-90 mg O₂/L) and 1b (high COD range, 100-600 mg O₂/L). It is noteworthy that the standard deviations are larger in the low range determinations; nonetheless these values are still small.

(a)

(b)

a) low COD range, 30-90 mg O_2/L and b) (high COD range, 100-600 mg O_2/L)

Attempts to halve the standard HgSO₄ concentration yielded a nonlinear response with COD concentration and therefore were not pursued any further.

Industrial samples

The following industrial wastewater samples were tested from: (a) cattle slaughterhouse, (b) municipal wastewater plant (Toluca North Plant), (c) municipal wastewater plant (Cerro de la

Estrella), (d) chocolate production, and (e) wastewater combined from diverse industries (undisclosed upon request). (Due to the high DQO concentrations, a 1/10 dilution had to be performed before analysis EN LOS 5 CASOS? la del rastro, chocolatera y la última, no tengo el nombre ni ubicación, la de la planta norte así se llama, es un planta de agua residula municipal de toluca, el cerro de la estrella, es otra planta tratadora de agua en Iztapalapa). MI PREGUNTA NO ES POR LOS NOMBRES DE LAS PLANTAS, SINO QUE SI EN TODAS SE HIZO LA MISMA DILUCIÓN QUE MENCIONAS. COD results (including averages and standard deviations) are shown in Table 1.

Table 1. Quintuplicate COD determinations of industrial wastewater samples (methods #1, 2 and 3).

		, C	
	Method 1	Method 2	Method 3
(a) Cattle slaught	terhouse		
test1	1880	1823	1723
test 2	1743	1810	1823
test 3	1620	1692	1637
test 4	1586	1743	1586
test 5	1734	1702	1578
Average	1712	1754	1669
Standard deviation	116.0	60.5	103.5
(b) Municipal wa	astewater plant (To	oluca North Plant)	
test1	1093	1234	1035
test 2	1283	1178	1321
test 3	950.0	1235	1173
test 4	1132	1089	1245
test 5	1265	1157	1087
Average	1144	1179	1172

COD, mg/L

Standard deviation	136.5	60.8	115.5				
(c) Municipal was	tewater plant (Ce	rro de la Estrella)					
test1	1616	1734	2135				
test 2	2023	1823	2046				
test 3	1784	1935	1939				
test 4	1801	2021	2178				
test 5	1698	1690	1724				
Average	1784	1841	2004				
Standard	152.3	137.3	181.5				
deviation	152.5	137.3	101.5				
(d) Chocolate pro	(d) Chocolate production wastewater						
test1	3303	3358	3548				
test 2	3440	3194	3465				
test 3	3270	3254	3239				
test 4	3281	3246	3294				
test 5	3343	3134	3198				
Average	3327	3237	3349				
Standard deviation	68.8	82.8	151.0				
(e) Wastewater combined from diverse industries							
test1	2126	2135	2235				
test 2	2116	2198	1944				
test 3	1906	2045	2176				
test 4	1973	1987	2198				
test 5	2054	2233	2231				

Average

Standard

deviation

2035

94.5

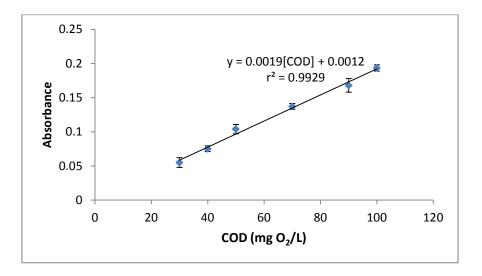
2120

102.9

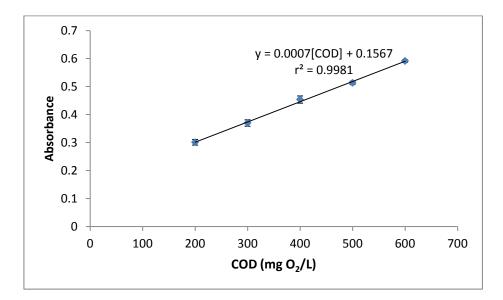
2157

121.4

The results obtained with methods #2 and #3 are compared below to those with the standard method #1 by means of Fisher's test (i.e., comparison of variances) to evaluate their performance with respect to the standardized test. The results are shown in Table 2.


Table 2. Fisher's test for methods #2 and #3 with different wastewater samples.(F from tables at the 95% confidence level = 6.388).

		North	Cerro de la	Chocolate	Diverse
Plant/Method:	Slaughterhouse	Plant	Estrella	Company	Industries
Method 2	3.681	5.042	1.231	1.450	1.187
Method 3	1.256	1.396	1.419	0.207	1.651


As observed in Table 2, all of the F-values obtained from the experiments are considerably smaller than the reference value obtained from tables (i.e., F = 6.388 at the 95% confidence level) which validates the procedures of the proposed greener methods that use H_2O_2 and reduce the Ag_2SO_4 requirement.

Decrease of reaction time with UV light

In order to decrease the reaction time required for method #3, samples were irradiated with UV light (i.e., method #4) during different times: 30, 40, 50 and 60 min. Linear results were only obtained at 60-min irradiation times. Calibration curves were obtained for both COD ranges: (a) low range, 30-90 mg O_2/L , and (b) high range, 100-600 mg O_2/L with the corresponding standard solutions. Good linear correlationswere obtained, as shown in Figures 2a and 2b. Again, it is noteworthy that the standard deviations are larger in the low range determinations; nonetheless these values are still small.

(b)

Figure 2: Calibration curves for the UV-irradiated (60 min) samples for two ranges: a) low COD range (30-100 mg O₂/L) and (b) high COD range (from 200-600 mg O₂/L).

Quintuplicate tests were then conducted with industrial wastewater samples from the same sources as above. COD results (including averages and standard deviations) obtained with the four methods are shown in Table 3.

Table 3. Quintuplicate COD determinations of real wastewater samples.Comparison of results obtained with the four methods described above.

	Method 1	Method 2	Method 3	Method 4
(a) Cattle slaug	ghterhouse			
test1	1698	1731	1332	1156
test 2	1805	1609	1270	1525
test 3	1709	1721	1358	1193
test 4	1584	1768	1418	1028
test 5	1592	1635	1135	1429
Average	1678	1693	1303	1266
Standard	01.0		100.0	204.0
deviation	91.9	67.5	108.0	204.9

COD, mg/L

(b) Municipal wastewater plant (Toluca North Plant)

Standard deviation	37.2	140.1	124.2	70.5
Average	1018	1002	1049	1031
test 5	976	1088	1102	1115
test 4	1062	1143	952	939
test 3	1038	893	1222	1076
test 2	984	1072	1060	1039
test1	1032	817	910.0	985

(c) Municipal wastewater plant (Cerro de la Estrella)

test1	1726	1770	1744	1815
test 2	1805	1773	1646	1602
test 3	1694	1623	1746	1595
test 4	1685	1886	1784	1912

test 5	1807	1772	1721	1695	
Average	1744	1765	1721	1724	
Standard	1/ 44	1705	1720	1/27	
deviation	59.1	93.1	51.4	137.8	
ueviation					
(d) Chocolate p	roduction waste	water			
1	0(20	2750	2521	2507	
test1	2632	2750	2521	2597	
test 2	2781	2763	2570	2844	
test 3	2590	2802	2618	2671	
test 4	2652	2591	2675	2737	
test 5	2811	2802	2757	2788	
Average	2693	2741	2628	2727	
Standard	07.0	97 0	02.0	07.0	
deviation	97.0	87.0	92.0	97.0	
(e) Wastewater	combined from	diverse industries			
test1	1867	1863	2021	1885	
test 2	1998	1941	1807	1974	
test 3	2007	1870	1895	2054	
test 4	1986	1929	2018	1984	
test 5	1897	1966	1951	1850	
Average					
Trerage	1951	1914	1938	1949	

From Table 3 it is clear that the results are very similar among the four methods. As above, the results obtained with methods #2, #3 and #4 are compared below to those with the standard method #1 by means of Fisher's test (i.e., comparison of variances).

Table 4. Fisher's test for methods #2, #3 and #4 with different wastewater samples.(F from tables at the 95% confidence level = 6.388).

		North	Cerro de la	Chocolate	Diverse
Plant/Method:	Slaughterhouse	Plant	Estrella	Company	Industries
Method 2	1.856	14.18	2.487	1.245	1.996
Method 3	1.381	11.15	1.319	1.113	1.976
Method 4	4.969	3.592	5.448	1.001	1.627

As observed in Table 4, all of the F-values obtained from the experiments (except those of the unusually turbid North Plant wastewaters) are smaller than the reference value obtained from tables (i.e., F = 6.388 at the 95% confidence level) which validates the procedure of this proposed greener method that uses UV-irradiated H₂O₂.

Some of the results in Tables 1 and 3 obtained with different methods are rather similar. This is possibly due to the presence of simpler organic compounds that are easily oxidizable and thus display a similar behavior with different methods, while greater differences mean a greater resistance to oxidation.

In order to better asssess the practicability of the different methods, a summary is now presented of the reagents and quantities used in each one as well as the reaction times and the use of electrical energy or lamps See Table 5.

Reagents and materials	Method 1 (Standard)	Method 2 (Peroxide)	Method 3 (Peroxide and half Ag ₂ SO ₄)	Method 4 (Peroxide, half Ag ₂ SO ₄ and UV light)
K ₂ Cr ₂ O ₇	Yes	No	No	No
HgSO ₄	Yes	Yes	Yes	Yes
H ₂ SO ₄	Yes	Yes	Yes	Yes
H ₂ O ₂	No	Yes	Yes	Yes

Table 5. Comparison of reagents and materials used in each technique.

Ag ₂ SO ₄	Yes	Yes	Half	Half
			concentration	concentration
Waste generated (mL)	75	75	75	75
Heating time (min)	120	0	0	0
Reaction time (min)	120	120	120	60
Use of UV light	No	No	No	Yes
Additional electrical power required	Yes	No	No	Yes
Goodness (F-test, see text)	Good	Good	Good	Good
Cost of 10 Tests (\$USD)	1.54	1.46	1.02	1.02

CONCLUSIONS

A greener, faster and cheaper method for COD determination is validated which decreases the toxicity of the standard method by replacing the oxidizing agent $K_2Cr_2O_7$ with H_2O_2 , and by halving the concentration of Ag_2SO_4 . The reaction time is also halved with the help of the UV light.

ACKNOWLEDGMENTS

We are grateful to the Facultad de Química de la Universidad Autónoma del Estado de México (FQ-UAEM) and Centro Conjunto de Investigación en Química Sustentable (CCIQS) for facilitating the use of space, materials and reagents, as well as to CONACyT for financial assistance. We acknowledge help and comments by Dr. Rosa María Gómez Espinosa (CCIQS).

REFERENCES

Ai S., Li J., Yang Y., Gao M., Pan Z. and Jin L. 2004 Study on photocatalytic oxidation for determination of chemical oxygen demand using a nano-TiO₂-K₂Cr₂O₇ system. Analytica Chimica Acta, 509, 237 - 341.

Alnaizy R. and Akgerman A. 2000 Advanced oxidation of phenolic compounds. Advances in Environmental Research, 4, 233 - 244.

APHA (American Public Health Association) AWWA (American Water Works Association) WEF (Water Environment Federation), (1998). "Standard Methods for the Examination of Water and Wastewater". Washington DC.

Benitez F. J., Acero J. L., Real F. J., Roldan G. and Casas F. 2011 Comparison of different chemical oxidation treatments. Chemical Engineering Journal, 168, 1149 -1156.

Berenguer A. 2015 COD Analysis (COD Measurement in Real Time). SGITT-OTRI (Universidad de Alicante). http://sgitt-otri.ua.es/es/empresa/documentos/to-cod-eng.pdf (accessed: 16 june 2015).

Carbajal-Palacios P., Balderas-Hernández P., Ibanez J. G. and Roa-Morales G. 2012 Replacing dichromate with hydrogen peroxide in the chemical oxygen demand (COD) test. Water Science and Technology, 66, 1069 - 1073.

Chen J., Zhang J., Xian Y., Ying X., Liu M. and Jin L. 2005 Preparation and application of TiO₂ photocatalytic sensor for chemical oxygen demand determination in water research. Water Research, 39, 1340 - 1346.

Chidambara Raj C. B. and Li Quen H. 2005 Advanced oxidation processes for wastewater treatment: Optimization of UV/H_2O_2 process through a statistical technique. Chemical Engineering Science, 60, 5305 - 5311.

Domini C. E., Vidal L. and Canals A. 2009 Trivalent manganese as an environmentally friendly oxidizing reagent for microwave and ultrasound-assisted chemical oxygen demand determination. Ultrasonics Sonochemistry, 16, 686 - 691.

Gogate P. R. and Pandit A. B. 2004 A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions. Advances in Environmental Research, 8, 501 - 551.

Kusic H., Koprivanac N. and Loncaric B. A. 2006 Minimization of organic pollutant content in aqueous solution by means of AOPs: UV- and ozone-based technologies. Chemical Engineering Journal, 123, 127 - 137.

Ledakowics S., Solecka M. and Zylla R. 2001 Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. Journal of Biotechnology, 89, 175 - 184.

Litter M. I. 2001 Advanced Oxidation Technologies: Solar technologies. Collective text, Unit of Chemical Activity. National Commission of Atomic Energy, General San Martín National University, Argentina, Chapter 5, 73 – 80 (In Spanish).

Luiz de Mattos I., Antonelli S. K., Delphini B. A. and Fernandes J. R. 2003 Hydrogen peroxide: Significance and chemical determination. Quimica Nova, 26, 373 – 380 (In Portuguese).

Nilsun H. I. 1999 Critical effect of hydrogen peroxide in photochemical dye degradation. Water Research, 33, 1080 - 1084.

Quintero L. and Cardona S. 2010 Technologies for the decolorization of dyes: Indigo and indigo carmine. Dyna, 77, 731 - 386.

Raposo F., Rubia M. A., Burja R. and Alaiz M. 2008 Assessment of a modified optimized method for determining chemical oxygen demand of solid substrates and solutions with high suspended solids content. Talanta, 76, 448 - 453.

Sousa A. C., Lucio M. M., Neto B. O., Marcone G., Pereira A., Dantas E., Fragoso W., Araujo M. and Galvão R. 2007 A method for determination of COD in a domestic wastewater treatment plant by using near-infrared reflectance spectrometry of seston. Analytica Chimica Acta, 588, 231 -236.

Solutions for a clean environment (USP technologies). 2015. Hydrogen Peroxide (H_2O_2) is a powerful oxidizer http://www.h2o2.com/products-and-services/us-peroxide-technologies.aspx?pid=112&name=Hydrogen-Peroxide. (Accessed: 16 June 2015).

Vyrides I. and Stuckey D. C. 2009 A modified method for the determination of chemical oxygen demand (COD) for samples with high salinity and low organics. Bioresource Technology, 100, 979 - 982.

Yao H., Wu B., Qu H. and Cheng Y. 2009 A high throughput chemiluminescence method for determination of chemical oxygen demand in waters. Analytica Chimica Acta, 633, 76 - 80.

Zhang S., Li L., Zhao H. and Li G. 2009. A portable miniature UVLED- based photoelectrochemical system for determination of chemical oxygen demand in wastewater. Sensors Actuators, 141, 634-64.

Zhu L., Chen Y., Wu Y., Li X. and Tang H. 2006. A surface fluorinated- TiO_2 -KMnO₄ photocatalytic system for determination of chemical oxygen demand. Analytica Chimica Acta, 571, 242 - 247.