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JOSÉ-JOB FLORES-GODOY
Universidad Iberoamericana
Dep. Fı́sica y Matemáticas
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Abstract: In this work, using algebraic methods, we characterize the parameters of a linear fractional transforma-
tion such that the composition of a class of rational function with the linear fractional transformation preserves
stability, in the case that the rational function is stable, or stabilizes the original rational function, in the case that
the rational function is unstable. As a consequence, we obtain a dual result about the robust stabilization of a
plant—represented as a rational function—compensated with a controller when there is a nonlinear disturbance
induce by function composition on the parameters of the controller. This implies the non-fragility of the controller
and also the plant robust stabilization for the same class of disturbances. Also, for a particular choice of one of
the parameters in the linear fractional transformation, the composition of functions preserves the structure of Pro-
portional, Proportional-Derivative and Proportional-Derivative-Integral type of controllers. Finally, results about
stabilization based in passivity using the linear fractional transformation are given.
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1 Introduction
Recently in literature it has has appeared a series of
articles on the subject of preservation of stability for
linear systems in the frequency domain, [1, 3, 4, 5, 8].
In [5] it is presented a method on maps that preserve
the stability of stable polynomials, i.e., the map that
is obtained by multiplying the vector of coefficients
of stable polynomials by a fixed matrix to obtain a
vector of stable coefficients. This method does not
have a complete characterization of which matrices
preserve stability. Other methods, used a substitu-
tion of a rational function in a polynomial to guar-
antee stability and are based on H-domains and di-
agrams of Mikhailov [8]. In [1], it is used the sub-
stitution α(s) = as+b

cs+d for the s variable in a stable
rational function and it is proven that for positive real
numbers a, b, c and d, such that ad − bc 6= 0, this
substitution preserves stability, but the case is very re-
strictive. In [3, 4], the results from [1] are extend and
generalize, showing that substitutions of the s vari-
able in a rational stable function by a strictly positive
real functions with relative degree zero, preserve sta-
bility, and under some additional conditions, powers

of functions SPR0, also preserve stability, but only
sufficient conditions are given. In this work using al-
gebraic methods, we give a complete characterization
on the parameters of a linear fractional transforma-
tion, α(s) = as+b

cs+d , such that the composition of a
class of rational, real, proper, stable or unstable func-
tions, H(s) = Nh(s)

Dh(s) , with the linear fraction transfor-
mation α(s) is stable, i.e., find the parameters a, b, c
and d such that H (α(s)) is stable, with α(s) = as+b

cs+d .
These results generalize and extend previous results
[1, 2, 3, 4]. In addition, it is possible to answer the
open problem proposed in [5] for the case of maps
that preserve stability, obtained under the substitution
of the variable s by α(s) in a stable polynomial. This
is done by characterizing all the maps obtained under
this substitution, that preserve stability for any stable
polynomial Dh(s) which is mapping to stable polyno-
mial (cs + d)m Dh(α(s)). In other words, we char-
acterized the space of parameters a, b, c and d for
which the map, preserves stability for any stable poly-
nomial, mapping stable polynomials in stable poly-
nomials. But also we characterized the space of pa-
rameters a, b, c and d for which the map, stabilizes



unstable polynomials. As a consequence, we obtain
a dual result, in the sense that the robust stabiliza-
tion of a plant H(s) with disturbances induced by the
substitution of the variable s by α−1(s), with a con-
troller C(s), implies the non-fragility of the controller
C(s) under the same class of disturbances, induced by
the substitution of the variable s by α(s), in the con-
troller, and vice versa i.e., the non-fragility of the con-
troller C(s) under disturbances induced by the sub-
stitution of the variable s by α−1(s), implies the ro-
bust stabilization of a plant H(s) with disturbances,
induced by the substitution of the variable s by α(s)
with a controller C(s). In the particular case when
b = 0, the substitution of the s variable by α(s), pre-
serves the structure for Proportional-Derivative (PD),
Proportional-Integral (PI) and Proportional-Integral-
Derivative (PID) controllers. Based on the resulting
pseudo-parametrization for these controllers class af-
ter the substitution of the variable s by α(s), taking
b = 0, we mention some ideas that could be used later
for tuning rules on the derivative part for the PD con-
trollers, and for the proportional and integral parts of
the PI controllers. Finally, we give two results about
stabilization based on passivity.

2 Preliminaries
This section we give the necessaries definitions and
notation used though out the paper.

Let R(s) be the set of rational functions with real
coefficients. Consider a rational function H(s) ∈
R(s)

H(s) =
Nh(s)
Dh(s)

= k
sn + an−1s

n−1 + · · ·+ a0

sm + bm−1sm−1 + · · ·+ b0

where Nh(s) and Dh(s) are coprime, with m ≥ n.
Let us factorize H(s) as H(s) = Hr(s)Hc(s), where

Hr(s) = k
(s− z1) · · · (s− zn−l1)
(s− p1) · · · (s− pm−j1)

has real poles and zeros, l1 < n, j1 < m; and

Hc(s) =

[
(s− ρ1)

2 + ν2
1

]
· · ·
[
(s− ρl0)

2 + ν2
l0

]
[
(s− σ1)

2 + ω2
1

]
· · ·
[
(s− σj0)

2 + ω2
j0

]
has complex poles and zeros, l0 = l1

2 and j0 = j1
2 .

Definition 1 ([9]) A function G(s) (rational or irra-
tional) of complex variable s = σ + jω (j =

√
−1)

is positive real (PR) if G(s) is analytic in Re[s] > 0
(stable), G(s) is real for s real and Re[G(s)] ≥ 0 for
all Re s > 0.

Definition 2 ([6, 7]) A real and rational function
H(s) is strictly positive real (SPR) if H(s) is ana-
lytic in Re[s] ≥ 0 and Re[H(jω)] > 0 for all ω ∈ R.
Moreover, a real and rational function p(s) is SPR0
if it is SPR and has zero relative degree.

Let us define the following sets:

SPR0∗ =
{

p(s) ∈ R(s) : p(s) is SPR0
}
∪ {s} .

Γ(a, b, c, d) =
{

α(s) ∈ R(s) : α(s) =
as + b

cs + d
,

ad− bc 6= 0 and a, b, c, d > 0
}
∪ {s} .

The following properties can be easily verified for
the set Γ(a, b, c, d)

1. lim(b,c)→(0,0)
as+b
cs+a = s, where a2 − bc > 0;

2. if α(s), β(s) ∈ Γ(a, b, c, d), then
α(β(s)), β(α(s)) ∈ Γ(a, b, c, d).

From the associative property of function composi-
tion, we know that the set Γ(a, b, c, d) is a non com-
mutative monoid under the composition operation.
Additionally, is well know that Γ(a, b, c, d) ⊂ SPR0∗,
[1].

3 On the preservation of stabiliza-
tion, fragility and passivity in PI,
PD and PID controllers

Consider a Single-Iput Single-Output (SISO) Linear
Time-Invariant (LTI) system with state variable repre-
sentation

ẋ = Ax + Bu

y = Cx + Du
(1)

with A ∈ Rn×n, B ∈ Rn, C ∈ R1×n and D ∈ R; and
transfer function representation

H(s) = C (sI −A)−1 + D

We use a linear fraction transformation, α(s) = as+b
cs+d ,

to obtain the SISO LTI system H(α(s)) with state
variables representation

ẋ = (dA− bI) QAx + (ad− bc) QABu

y = CQAx + (D + cCQAB) u
(2)

with QA = (aI − cA)−1.
The problems to study in this section are the fol-

lowing:



1. If system (1) is stable, for which set of parame-
ters a, b, c, d, system (2) is stable?

2. If system (1) is unstable, for which set of param-
eters a, b, c, d, system (2) is stable?

The answers to the previous questions are given
in the following two results.

Lemma 3 Consider a plant H(s) = Nh(s)
Dh(s)

where Nh(s) and Dh(s) are polynomials satisfying
deg Dh(s) = m ≥ deg Nh(s) = n. Let us also de-
fine the lineal fractional transformation α(s) = as+b

cs+d
where a, b, c and d are real numbers such that cd 6= 0
and ad − bc 6= 0.Let us substitute the s variable
by α(s) in H(s), i.e., H (α(s)). Then, Hα(s) ≡
H(α(s)) is stable if and only if the following condi-
tions holds:

1. Either pid−b > 0 and a−pic < 0, or pid−b < 0
and a−pic > 0 for each i = 1, . . . ,m−j1 where
p1, . . . , pm−j1 are the real poles of H(s);

2. the parameters a, b, c and d satisfies

σ2
i −

(
a

c
+

b

d

)
σi +

ab

cd
+ ω2

i > 0

for i = 1, . . . , j0, where σi +jωi are the complex
poles of H(s).

Proof: The proof is in Appendix A.

Remark 4 Notice that if we consider x = a
c and y =

b
d , the function f(x, y) = σ2

j − (x + y) σj + xy + ω2
j

has a local minimum at x = y = σj , but f(x, y) does
not have a global minimum for x, y ∈ R.

Note that the parameters a, b, c and d can be neg-
ative, and c and d must be different from zero. More-
over, no assumption on the sign of the poles of H(s)
is made.

The case when one or two of the parameters a,
b, c and d are zero or negative is considered in the
following result. It is clear that there exist only two
cases that make sense for two parameters equal to zero
and none for more than two parameters equal to zero.

Lemma 5 Consider H(s) = Nh(s)
Dh(s) as defined in

Lemma 3, but stable, (i.e., p1, . . . , pm−j1 < 0,
σ1, . . . , σj0 < 0). Then H(α(s)) is a stable plant if
α(s) and H(s) satisfies at least one of the following
conditions:

1. a, b, c, d > 0 and ad − bc 6= 0, or a, b, c, d < 0
and ad− bc 6= 0;

2. b, c, d > 0, a = 0 or b, c, d < 0, a = 0; and all
the poles in H(s) must be complex.

3. a, c, d > 0, b = 0 or a, c, d < 0, b = 0;

4. a, b, d > 0, c = 0;

5. a, b, c > 0, d = 0, and max {σ1, . . . , σj0} < a
c ;

6. a, d > 0, b = c = 0 or a, d < 0, b = c = 0;

7. b, c > 0, a = d = 0 or b, c < 0, a = d = 0; and
all the poles in H(s) must be real.

8. a, b > 0, d < 0, c = 0 and pid − b < 0 for
i = 1, . . . ,m− j1 and max {σ1, . . . , σj0} < b

d ;

9. a, b < 0, d < 0, c = 0;

10. a < 0, b > 0, d < 0, c = 0 and pid − b > 0
for i = 1, . . . ,m − j1 and b − dσj > 0 for j =
1, . . . , j0;

11. a, b > 0, c < 0, d = 0, a − pic > 0 for i =
1, . . . ,m−j1 and a−σjc > 0 for j = 1, . . . , j0;

12. a, b < 0, c < 0, d = 0; a, b, c > 0, d = 0.

13. a > 0, b < 0, c < 0, d = 0 and a − pic < 0
for i = 1, . . . ,m − j1 and a − cσj > 0 for j =
1, . . . , j0.

Proof: The proof is in Appendix A.

Remark 6 When a > 0, b < 0, d < 0, c = 0 or a <
0, b > 0, c < 0, d = 0 then stability is not guarantee,
and stable plants are not mapped into stable plants,
unless p1, . . . , pm−j1 > 0 and σ1, . . . , σj0 > 0.

Lemma 7 In the case when p1, . . . , pm−j1 > 0 and
σ1, . . . , σj0 > 0 the plant H(α(s)) is a stable if at
least one of the following conditions holds:

1. a > 0, b < 0, d < 0, c = 0 and pid − b < 0
for i = 1, . . . ,m − j1 and b − dσj > 0 for j =
1, . . . , j0;

2. a < 0, b > 0, c < 0, d = 0 and a − pic < 0
for i = 1, . . . ,m − j1 and a − cσj > 0 for j =
1, . . . , j0.

Proof: The proof is in Appendix A.
Now we are going to present some applications

of the former technical results to the duality between
robust stabilization and fragility of controllers.



Proposition 8 Let us consider the proper plant
H(s) = Nh(s)

Dh(s) and the proper controller C(s) =
Nc(s)
Dc(s)

such that it stabilizes the plant, where Nh(s),
Nc(s), Dc(s) and Dh(s) are polynomials with
deg D(s) = n ≥ deg N(s). Also consider the lin-
ear transformation α(s) = as+b

cs+d were a, b, c, d ∈ R,
and let us substitute the s variable by α−1(s) = b−ds

cs−a

in H(s). Then:

1. the controllers of the form Cα(s) ≡ C(α(s))
stabilizes H(s), if C(s) stabilizes in a robust
way the plant Hα−1(s) ≡ H(α−1(s)), where
the a, b, c, d parameters satisfy at least one of
the conditions of Lemma 5, or the conditions of
Lemma 3 for the closed loop plant:

P̄ (s) =
C(s)Hα−1(s)

1 + C(s)Hα−1(s)
.

2. the controller C(s) stabilizes in a robust way
the plants Hα(s) ≡ H(α(s)), if the controllers
C(α−1(s)) stabilizes the plant H(s), where the
a, b, c, d parameters satisfies at least one of the
conditions of Lemma 5, or the conditions of
Lemma 3 for the closed loop plant:

P̂ (s) =
C(α−1(s))H(s)

1 + C(α−1(s))H(s)
.

Proof:

1. Let us suppose that the proper controller C(s),
stabilizes in a robust way the plant Hα−1(s),
where the a, b, c and d parameters satisfies at
least one of the conditions of Lemma 5, or the
conditions of Lemma 3 for the stable plant P̄ (s).
From Lemma 3 or Lemma 5 and from the fact
that the substitution of s by α(s) preserves sums,
multiplication, division and inversion of ratio-
nal real proper and constant functions, the plant
P̄ (α(s)) is then stable, where Hα−1(α(s)) is the
plant H(s), and the parameters a, b, c, d are as
stated above.

2. The proof of is similar to the previous item.

ut
Now, for the particular case, when the controller

is a PD, PI,or PID is studied.
Let us consider a PD controller of the form

CPD(s) = Kp + KDs
s+r , and a PI controller of the form

CPI(s) = Kp + KI
s . These controllers can be rewrit-

ten as: CPD(s) = (Kp+KD)s+Kpr
s+r and CPI(s) =

Kps+KI

s . Note that CPD(s) ∈ Γ(a, b, c, d) if Kp, KD,

r > 0. We can now attack the problem of the non-
fragile stabilization under non linear disturbances in-
duced by the substitution of the s variable by the linear
fractional transformation α(s).

We then have the following results:

Corollary 9

1. If the controller CPD(s) = Kp + KDs
s+r robustly

stabilizes the plants Hα−1(s), where the param-
eters a, b, c, d satisfies at least one of the con-
ditions of Lemma 5 for the closed loop system
formed by CPD(s) and Hα−1(s), then the con-
trollers

CPD(α(s)) =
(

(Kp + KD)a + Kprc

a + rc

)
s + b+ld

a+lc

s + b+rd
a+rc

stabilizes H(s) with l = Kpr
Kp+KD

. If
α(s) ∈ Γ(a, b, c, d), and Kp,KD, r > 0, then
CPD(α(s)) ∈ Γ(a, b, c, d).

2. If the controller CPI(s) = Kp + KI
s robustly sta-

bilizes the plants Hα−1(s), where the parameters
a, b, c, d satisfies at least one of the conditions of
Lemma 5 for the closed loop system formed by
CPI(s) and Hα−1(s), then the controllers

CPI(α(s)) =
(

Kpa + KIc

a

) s + Kpb+KId
Kpa+KIc

s + b
a

stabilizes H(s). If α(s) ∈ Γ(a, b, c, d) and
Kp,KI > 0, then CPI(α(s)) ∈ Γ(a, b, c, d).

Proof: It follows directly from Proposition 8
and from the definition and properties of the set
Γ(a, b, c, d). ut

Note that the controllers CPD(α(s)) and
CPI(α(s)) in Corollary 9 are not PD or PI controllers
(unless b = 0). Both controllers are lead-lag net-
works. As Γ(a, b, c, d) ⊂ SPR0∗, then CPD(α(s))
and CPI(α(s)) are strictly passive controllers.
Obviously, they are also a dual version of this result.

When the substitution is γ(s) = as
cs+d we then

have the following interesting result:

Corollary 10

1. If CPD(s) = Kp + KDs
s+r robustly stabilizes the

family Hγ−1(s), then the PD controllers:

ĈPD(s) = Kp +
K̂Ds

s + q

with K̂D = aKD
a+rc and q = rd

a+rc , stabilizes H(s),
for any real a, b, c, d such that a, c, d > 0 and
b = 0;



2. If CPI(s) = Kp+ KI
s robustly stabilizes the fam-

ily Hγ−1(s), then the PI controllers:

ĈPI(s) = K̂p +
K̂I

s

with K̂p = Kp + KIc
a and K̂I = dKI

a , stabilizes
H(s), for any real a, b, c, d such that a, c, d > 0
and b = 0;

3. If CPID(s) =
(
Kp + KI

s

)(
Kp + KDs

s+r

)
ro-

bustly stabilizes the family Hγ−1(s), then the
PID controllers:

ĈPID(s) =

(
K̂p +

K̂I

s

)(
Kp +

K̂Ds

s + q

)

with K̂p = Kp + KIc
a , K̂I = dKI

a and K̂D =
aKD
a+rc , stabilizes H(s), for any real a, b, c, d such
that a, c, d > 0 and b = 0.

Proof: The proof follows directly from Lemma 5 and
Proposition 8. ut

Clearly, the substitution γ(s), preserves the struc-
ture of the PD and PI controllers. In the case of PD
controllers it is interesting to note that the Kp constant
doesn’t change. This can be interpreted in the follow-
ing way: the predictive part of the PD controller can
be modified following the relations:

K̂D =
aKD

a + rc
, q =

rd

a + rc

They can be seen as a pseudo-parametrization of the
derivative part. We can then used this information to
develop in the future tuning rulers for the derivative
part of the controller. In the same way, we can see
that in the case of PI controllers the gains change fol-
lowing

K̂p = Kp +
KIc

a
, K̂I =

dKI

a

By using standard results on passivity, we can to
give the following result.

Corollary 11 Consider the following controllers:

1. C1(s) = CPI(s) = Kp+ KI
s where Kp,KI > 0.

2. C2(s) = CPD(s) = Kp + KDs
s+r where

r, Kp,KD > 0.

3. C3(s) = CLL(s) = Kp
1+TNs
1+TDs where

Kp, TD, TN > 0.

4. C4(s) = CPID1(s) = Kp + KI
s + KDs

s+r where
r, Kp,KI ,KD > 0.

5. C5(s) = CPID2(s) = Kp + KI
s + KDs where

Kp,KI ,KD > 0.

6. C6(s) = CPID3(s) = Kp

(
1+Tis

Tis

)
1+Tds
1+ηTds

where Kp > 0, 0 < Td < Ti and 0 < η ≤ 1.

7. C7(s) = CPID4(s) = Kpβ
(

1+Tis
1+βTis

)
1+Tds
1+ηTds

where Kp > 0, 0 < Td < Ti, 1 ≤ β and
0 < η ≤ 1.

Now the following assumption is made: Given a fixed
plant H(s), there exists a subset Ω of linear transfor-
mations α(s) = as+b

cs+d where a, b, c, d are real num-
bers, such that H(α(s)) is a PR function for each
α(s) ∈ Ω.

Then, for all SPR0 function ν(s) and for all
α(s) ∈ Ω, the controller Cj(ν(s)) stabilizes the plant
H(α(s)) for j = 1, . . . , 7.

Proof: It is sufficient to observe that the controllers
Cj(ν(s)) are strict input passive for j = 1, . . . , 7, if
ν(s) is an SPR0 function, and that H(α(s)) is PR
function for each α(s) ∈ Ω. Hence, using the stan-
dard stabilization result on feedback of passive sys-
tems and strict input passive systems, the corollary is
proven (see Theorem 3.5 in [9]). ut

Notice that the plant H(s) can be unstable and
non minimum phase and that the controller C7(ν(s))
stabilizes the plant H(α(s)) for any ν(s) ∈ SPR0∗.

Corollary 12 Let us consider the plant H(s) and
one of the following controllers CPD(s), CPI(s) or
CPID(s) stabilizes the plant. Also consider the linear
transformations γ1(s) = as

cs+d or γ2(s) = as+b
cs were

a, b, c, d are positive real numbers, and let us substi-
tute the s variable by γ−1

1 (s) = ds
a−cs or γ−1

2 (s) =
b

cs−a in H(s). Then:

1. The controllers of the form Cγk
(s) ≡ C(γk(s))

stabilizes H(s), if C(s) stabilizes in a robust way
the plant Hγ−1

k
(s) ≡ H(γ−1

k (s)) for k = 1, 2.
Where Cγk

(s) is one of the following controllers
CPD(γk(s)), CPI(γk(s)) or CPID(γk(s)).

2. The controller C(s) stabilizes in a robust way
the plants Hγk

(s) ≡ H(γk(s)), if the controllers
C(γ−1

k (s)) stabilizes the plant H(s) for k =
1, 2. Where C(γ−1

k (s)) is one of the follow-
ing controllers CPD(γ−1

k (s)), CPI(γ−1
k (s)) or

CPID(γ−1
k (s)).



Proof: The proof is consequence of the Proposition 8.
ut

Corollary 12 can be interpreted as a dual result,
in the same sense that the Proposition 8. Moreover, in
this case by Corollary 10, notice that CPD(γ1(s)) and
CPD(γ−1

1 (s)) are PD controllers, CPI(γ1(s)) and
CPI(γ−1

1 (s)) are PI controllers and CPID(γ1(s))
and CPID(γ−1

1 (s)) are PID controllers, with new pa-
rameters.

Corollary 13 Consider the controllers Ci(s) for i =
1, . . . , 7. Then:

1. For all PR0 function σ(s), the controllers Cj(s)
are PR0 functions for j = 1, . . . , 7. In particu-
lar, for γ1(s) = as

cs+d and γ2(s) = as+b
cs were

a, b, c, d are positive real numbers, we have the
following:

(a) C1(γ1(s)) = Kp + cKI
a + dKI

as and
C1(γ2(s)) = Kp + KIcs

as+b where Kp,KI >
0.

(b) C2(γ1(s)) = (aKp+Kprc+KIa)s+Kprd
(a+rc)s+rd and

C2(γ2(s)) = (aKp+Kprc+KIa)s+Kpb
(a+rc)s+b where

r, Kp,KD > 0.

(c) C3(γ1(s)) = K (c+TN a)s+d
(c+TD a)s+d and

C3(γ2(s)) = Kp
(c+TN a)s+TN b
(c+TD a)s+TD b where

Kp, TD, TN > 0.

(d) C4(γ1(s)) = Kp + cKI
a + dKI

as + KD as
(a+rc)s+rd

and C4(γ2(s)) = Kp + KIcs
as+b + KD as+b

(a+rc)s+b

where r, Kp,KI ,KD > 0.

(e) C5(γ1(s)) = Kp + cKI
a + dKI

as + KD as
cs+d and

C5(γ2(s)) = Kp + KDa
c + KDb

cs + KIcs
cs+d

where Kp,KI ,KD > 0.

(f) C6(γ1(s)) = Kp
((c+Td a)s+d)((c+Ti a)s+d)

((c+ηTd a)s+d)Ti as

and C6(γ2(s)) =
Kp

((c+Ti a)s+Ti b)((c+Td a)s+Td b)
Ti(as+b)((c+ηTd a)s+ηTd b) where

Kp > 0, 0 < Td < Ti and 0 < η ≤ 1.

(g) C7(γ1(s)) =
Kpβ

((c+Tda)s+d)((c+Tia)s+d)
((c+ηTda)s+d)((c+βTia)s+d)

and C7(γ2(s)) =
Kpβ

((c+Tda)s+Tdb)((c+Tia)s+Tib)
((c+ηTda)s+ηTdb)((c+βTia)s+βTib)

where Kp > 0, 0 < Td < Ti, 1 ≤ β and
0 < η ≤ 1.

2. If given a fixed plant H(s), there exists a sub-
set Ω of linear transformations α(s) = as+b

cs+d
were a, b, c, d are positive real numbers, such
that H(α(s)) is PR function for each α(s) ∈ Ω.
Then for all α(s) ∈ Ω,

(a) the controller C1(γ2(s)) stabilizes the
plant H(α(s)).

(b) the controllers C2(γ1(s)) and C2(γ2(s))
stabilize the plant H(α(s)).

(c) the controllers C3(γ1(s)) and C3(γ2(s))
stabilize the plant H(α(s)), if
(TN − TD) 6= 0.

(d) the controller C4(γ2(s)) stabilizes the
plant H(α(s)), if (KD − 1) a− rc 6= 0.

(e) the controller C6(γ2(s)) stabilizes the
plant H(α(s)), if Kp > 0, 0 < Td < Ti

and 0 < η ≤ 1.

(f) the controllers C7(γ1(s)) and C7(γ2(s))
stabilize the plant H(α(s)), if 0 < Td <
Ti, 1 ≤ β and 0 < η ≤ 1.

Proof: It is consequence of the Proposition 7, the
well-known fact of that composition of PR functions
is a PR function, the fact that in general the linear
transform as+b

cs+d is SPR0 if a, b, c, d > 0 and ad−bc 6=
0, and the fact that the controllers in item 2 are SPR0
due to the substitution s → γ1(s) or γ2(s), then by
the Theorem 3.5 in [9]. ut

Corollary 13 is a generalization of Corollar-
ies 10 and 11.

4 Example

We take a plant of the form p1(s) = 2(s+1)
s2+2s−3

and

a lead-lag controller c1(s) = 34.745(s+1.6373)
s+37.9063 , which

stabilizes this plant. Let α−1(s) = b−ds
cs−a , then the

closed-loop transfer function is given by

H(s) =
c1(s)p1(α−1(s))

1 + c1(s)p1(α−1(s))

with denominator f(s, a, b, c, d) = A3s
3 + A2s

2 +
A1s + A0 and coefficients

A3 =− 66.49c2 − 1.0d2 + 71.49cd

A2 =2.0bd + 189.59cd− 71.49bc + 132.98ac

− 5.7077× 10−2c2 − 37.906d2 − 71.49ad

A1 =0.11415ac− 189.59ad + 75.813bd− 66.49a2

− 189.59bc− 1.0b2 + 71.49ab

A0 =189.59ab− 37.906b2 − 5.7077× 10−2a2

This polynomial is stable if and only if the follow-
ing inequalities are met: A0 > 0, A1 > 0, A2 > 0,
A3 > 0 and A1A2 − A0A3 > 0. Moreover, we re-
quire to meet at least one of the conditions 1, 2, 3, 6,



or 7, in Lemma 5. Now by item 1 in Proposition 8, the
controllers

c1(α(s)) =
1.73

[(
104a + 16373c

)
s + 104b + 16373d

]
(500a + 18953c) s + 500b + 18953d

stabilize the plant p1(s) for the set of parameters
a, b, c, d that met with the last conditions. For exam-
ple with a, d ∈

[
10.0−3, 8

]
, b, c ∈ [0, 5], we get the

controllers c1(α(s)) stabilizes p1(s).

5 Conclusions
We have characterized the space of parameters
a, b, c, d for which the map s → α(s), preserves sta-
bility for any stable polynomial, mapping stable poly-
nomials in stable polynomials. But also we charac-
terized the space of parameters a, b, c, d for which the
map before mentioned, mapping unstable polynomi-
als in stable polynomials. Like a consequence, we
obtain a dual result, in the sense that the robust sta-
bilization of a plant H(s) with disturbances nonlin-
ear in its parameters, induced by the substitution of
the variable s by α−1(s), with a controller C(s), im-
plies the nonfragility of the controller C(s) under the
same class of disturbances, induced by the substitu-
tion of the variable s by α(s), in the controller, and
the nonfragility of the controller C(s) under distur-
bances, induced by the substitution of the variable s
by α−1(s), in the controller, implies the robust stabi-
lization of a plant H(s) with disturbances nonlinear
in its parameters, induced by the substitution of the
variable s by α(s) with a controller C(s). In the par-
ticular case when b = 0, the substitution α(s), pre-
serves the structure of the controllers type PD/PI/PID
and we give some ideas to use later for tuning rules for
the derivative part of the controller type PD, and for
the proportional and integral part of the controller type
PI. Based on the resulting pseudo-parametrization for
this type of controller, after of the substitution of the
variable s by α(s), taking b = 0. Finally, we given
results about stabilization based in passivity using the
substitutions γ1(s) and γ2(s).
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A Appendix

In this appendix, we present the proofs for Lemma 3,
Lemma 5 and Lemma 7.
Proof of the Lemma 3. The proof done in two parts
based on the factorization H(s) = Hr(s)Hc(s) de-
scribed in the Preliminaries. The first part shows the
stability for the Hr(s) factor that contains only real
poles and zeros. The second part shows the stability
for Hc(s) factor that contains only complex poles and
zeros. The factor Hr (α(s)) can be written as

Hr (α(s)) = kβ (cs + d)s0
(s− δ1) · · · (s− δn−l1)
(s− η1) · · · (s− ηm−j1)

where β−1 =
Qm−j1

i=1 (a−pic)
Qn−l1

i=1 (a−zic)
, s0 = m − j1 − (n −

l1), δi = dzi−b
a−czi

(i = 1, ..., n − l1); ηi = dpi−b
a−cpi

(i =
1, ...,m−j1). And the factor Hc (α(s)) can be written
as

Hc (α)) = K(s)
∏l0

i=1 B2,is
2 + B1,is + B0,i∏j0

i=1 A2,is2 + A1,is + A0,i

with K(s) = (cs + d)j1−l1 , B0,i = (b− ρid)2 +
ν2

i d2, B1,i = 2
[
(a− ρic) (b− ρid) + ν2

i cd
]
, B2,i =

(a− ρic)
2 + ν2

i c2, A0,i = (b− σid)2 + ω2
i d

2, A1,i =



2
[
(a− σic) (b− σid) + ω2

i cd
]
, A2,i = (a− σic)

2 +
ω2

i c
2. Now, we assume that cd 6= 0 and ad− bc 6= 0.

In consequence Hr(α(s)) is stable i.e., ηi < 0 for
i = 1, . . . ,m − j1 if and only if either pid − b > 0
and a− pic < 0, or pid− b < 0 and a− pic > 0 for
each i = 1, . . . ,m− j1. Note that Hc(α(s)) is stable
if and only if (a− σic)(b− σid) + ω2

i cd > 0 for i =
1, . . . , j0, since cd 6= 0 this condition is equivalent to
σ2

i −
(

a
c + b

d

)
σi + ab

cd + ω2
i > 0 for i = 1, . . . , j0.

Therefore, with these conditions H(α(s)) is stable. ut
Let I = {1, ...,m− j1} and J = {1, ..., j0}.

Proof of the Lemma 5

1. This case was proven in [1].

2. If either b, c, d > 0 and a = 0, or b, c, d < 0 and
a = 0. Then pid−b

pic
> 0 since pi < 0 ∀i ∈ I,

and Hr(α(s)) is unstable. For the complex case
(a− σjc)(b− σjd) + cdω2

j = −σjc(b− σjd) +
cdω2

j > 0, since σj < 0, ∀j ∈ J , and Hc(α(s))
is stable.

3. If either a, c, d > 0 and b = 0 or a, c, d < 0 and
b = 0. Then pid

a−pic
< 0 since pi < 0, ∀i ∈ I,

and Hr(α(s)) is stable. For the complex case
(a− σjc)(b− σjd) + cdω2

j = −σjd(a− σjc) +
cdω2

j > 0, since σj < 0, ∀j ∈ J and Hc(α(s))
is stable.

4. If a, b, d > 0, c = 0, then pid−b
a < 0 since pi <

0, ∀i ∈ I, and Hr(α(s)) is stable. For the com-
plex part, note that if c = 0 then (a − σjc)(b −
σjd)+cdω2

j = cd(σ2
j +ω2

j )−(ad+bc)σj +ab =
−adσj +ab > 0, since σj < 0, ∀j ∈ J is stable.

5. It is similar to item 4.

6. If either a, d > 0, b = c = 0 or a, d < 0, b =
c = 0. Then pid

a < 0 since pi < 0, ∀i ∈ I and
Hr(α(s)) is stable, and cd(σ2

j + ω2
j ) − (ad +

bc)σj + ab = −adσj > 0, since σj < 0, ∀j ∈ J
and Hc(α(s)) is stable.

7. It is similar to item 6., for the real part. In the
complex case we have cd(σ2

j + ω2
j ) − (ad +

bc)σj + ab = bcσj < 0, since σj < 0, ∀j ∈ J
and b, c > 0, a = d = 0 or b, c < 0, a = d = 0,
then Hc(α(s)) is stable.

8. If a, b > 0, d < 0, c = 0, then pid−b
a < 0, since

pid− b < 0, ∀i ∈ I and Hr(α(s)) is stable. For
the complex part cd(σ2

j + ω2
j ) − (ad + bc)σj +

ab = −adσj + ab > 0, since σj < 0, ∀j ∈ J
and max {σ1, . . . , σj0} < b

d . Then Hc(α(s)) is
stable.

9. It is similar to item 8. for the real part. In the
complex part we have −adσj + ab > 0, since
σj < 0, ∀j ∈ J and a, b < 0, d < 0, c = 0.
Then Hc(α(s)) is stable.

10. If a < 0, b > 0, d < 0, c = 0 and pid − b > 0,
∀i ∈ I then pid−b

a < 0 since pi < 0, ∀i ∈ I and
Hr(α(s)) is stable. If −dσj + b > 0, ∀j ∈ J ,
then cd(σ2

j +ω2
j )−(ad+bc)σj +ab = −adσj +

ab > 0, since σj < 0, ∀j ∈ J and Hc(α(s)) is
stable.

11. It is similar to item 10.

12. If a, b < 0, c < 0, d = 0, −b
a−pic

< 0 since pi <

0, ∀i ∈ I and Hr(α(s)) is stable. In the complex
part we have cd(σ2

j + ω2
j )− (ad + bc)σj + ab =

−bcσj + ab > 0 since σj < 0, ∀j ∈ J and
Hc(α(s)) is stable.

13. If a > 0, b < 0, c < 0, d = 0 and a − pic < 0,
∀i ∈ I, then −b

a−pic
< 0, since pi < 0, ∀i ∈ I and

Hr(α(s)) is stable. In the complex part we have
cd(σ2

j +ω2
j )−(ad+bc)σj+ab = −bcσj+ab > 0

since σj < 0 and a − cσj > 0, ∀j ∈ J and
Hc(α(s)) is stable.

ut
Proof of the Lemma 7.

1. We assume that pi > 0, ∀i ∈ I and σj > 0,
∀j ∈ J . In this case if a > 0, b < 0, d < 0,
c = 0 and pid − b < 0, then pid−b

a < 0 and
Hr(α(s)) is stable. If b− dσj > 0 then cd(σ2

j +
ω2

j ) − (ad + bc)σj + ab = −adσj + ab > 0,
∀j ∈ J and Hc(α(s)) is stable.

2. We assume that pi > 0, ∀i ∈ I and σj > 0,
∀j ∈ J . If a < 0, b > 0, c < 0, d = 0,
and a − pic < 0 then −b

a−pic
< 0, and Hr(α(s))

is stable. In the complex part we have cd(σ2
j +

ω2
j )− (ad+ bc)σj +ab = −bcσj +ab > 0 since

σj < 0 and a− cσj > 0, ∀j ∈ J and Hc(α(s))
is stable.

ut
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